A275289 Number of set partitions of [n] with symmetric block size list of length three.
1, 2, 7, 19, 56, 160, 463, 1337, 3874, 11241, 32682, 95172, 277577, 810706, 2370839, 6941473, 20345618, 59692831, 175295996, 515217034, 1515478535, 4460940067, 13140081770, 38729776774, 114221851951, 337050020750, 995097461503, 2939337252651, 8686270661400
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
- Wikipedia, Partition of a set
Crossrefs
Column k=3 of A275281.
Formula
G.f.: -(1/2)*(3*x-1+sqrt((1-3*x)*(x+1)*(2*x-1)^2))/((3*x-1)*(x+1)).
a(n) ~ 3^(n-1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 02 2016
Recurrence: (n-3)*n*a(n) = (n^2 - 3*n + 4)*a(n-1) + (n-2)*(5*n - 11)*a(n-2) + 3*(n-3)*(n-2)*a(n-3). - Vaclav Kotesovec, Aug 02 2016
From Mélika Tebni, Jun 20 2025: (Start)
a(n) = Sum_{k=floor(n/2)..n-2} binomial(n-1, k+1)*binomial(k, n-(k+1)).
Inverse binomial transform of A371965. (End)