cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275293 Number of set partitions of [2n] with symmetric block size list of length four.

Original entry on oeis.org

1, 13, 171, 2306, 31795, 446349, 6357295, 91615780, 1333116522, 19555739050, 288834920011, 4291094756898, 64074785496631, 961011037139573, 14469795095794935, 218624167641077960, 3313409217150899536, 50356639055387740752, 767231549954564821746
Offset: 2

Views

Author

Alois P. Heinz, Jul 22 2016

Keywords

Examples

			a(3) = 13: 12|3|4|56, 13|2|4|56, 1|23|45|6, 1|23|46|5, 14|2|3|56, 1|24|35|6, 1|24|36|5, 1|25|34|6, 1|26|34|5, 15|2|3|46, 1|25|36|4, 1|26|35|4, 16|2|3|45.
		

Crossrefs

Bisection of column k=4 of A275281.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [0$2, 1, 13][n+1],
          ((n-1)*(4320-23328*n+1365*n^6-11072*n^5+35733*n^4
           -58702*n^3+51744*n^2)*a(n-1)-(4*(2*n-5))*(n-1)*(n-2)
           *(2*n-3)*(21*n^3-55*n^2+44*n-12)*a(n-2))/((2*(n-2))*
            (2*n-1)*(21*n^3-118*n^2+217*n-132)*n^2))
        end:
    seq(a(n), n=2..30);
  • Mathematica
    a[2] = 1; a[3] = 13; a[n_] := a[n] = ((n-1)*(4320 - 23328*n + 1365*n^6 - 11072*n^5 + 35733*n^4 - 58702*n^3 + 51744*n^2)*a[n-1] - (4*(2*n-5))*(n-1) *(n-2)*(2*n-3)*(21*n^3 - 55*n^2 + 44*n - 12)*a[n-2])/((2*(n-2))*(2*n-1)* (21*n^3 - 118*n^2 + 217*n - 132)*n^2);
    Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)

Formula

a(n) ~ 2^(4*n-3) / (3*Pi*n). - Vaclav Kotesovec, Aug 02 2016