A275299 Number of ordered ways to write n as x^3 + y^2 + z^2 + w^2 with x + y - z a square, where x,y,z,w are nonnegative integers with y <= z.
1, 2, 3, 3, 2, 1, 3, 2, 1, 4, 4, 2, 3, 4, 2, 2, 2, 3, 7, 4, 1, 2, 5, 2, 1, 4, 2, 5, 4, 2, 3, 2, 3, 4, 6, 3, 3, 8, 4, 2, 2, 2, 6, 4, 4, 4, 4, 2, 4, 5, 4, 8, 3, 4, 3, 3, 3, 4, 7, 1, 4, 4, 5, 3, 4, 5, 5, 8, 3, 5, 5, 1, 7, 10, 3, 3, 6, 5, 5, 1, 5
Offset: 0
Keywords
Examples
a(1) = 2 since 1 = 0^3 + 0^2 + 0^2 + 1^2 with 0 + 0 - 0 = 0^2 and 0 = 0, and also 1 = 1^3 + 0^2 + 0^2 + 0^2 with 1 + 0 - 0 = 1^2 and 0 = 0. a(5) = 1 since 5 = 1^3 + 0^2 + 0^2 + 2^2 with 1 + 0 - 0 = 1^2 and 0 = 0. a(8) = 1 since 8 = 0^3 + 2^2 + 2^2 + 0^2 with 0 + 2 - 2 = 0^2 and 2 = 2. a(20) = 1 since 20 = 1^3 + 3^2 + 3^2 + 1^2 with 1 + 3 - 3 = 1^2 and 3 = 3. a(24) = 1 since 24 = 0^3 + 2^2 + 2^2 + 4^2 with 0 + 2 - 2 = 0^2 and 2 = 2. a(59) = 1 since 59 = 0^3 + 5^2 + 5^2 + 3^2 with 0 + 5 - 5 = 0^2 and 5 = 5. a(71) = 1 since 71 = 1^3 + 5^2 + 6^2 + 3^2 with 1 + 5 - 6 = 0^2 and 5 < 6. a(79) = 1 since 79 = 3^3 + 4^2 + 6^2 + 0^2 with 3 + 4 - 6 = 1^2 and 4 < 6. a(119) = 1 since 119 = 1^3 + 3^2 + 3^2 + 10^2 with 1 + 3 - 3 = 1^2 and 3 = 3. a(184) = 1 since 184 = 5^3 + 3^2 + 7^2 + 1^2 with 5 + 3 - 7 = 1^2 and 3 < 7. a(575) = 1 since 575 = 7^3 + 0^2 + 6^2 + 14^2 with 7 + 0 - 6 = 1^2 and 0 < 6. a(743) = 1 since 743 = 1^3 + 2^2 + 3^2 + 27^2 with 1 + 2 - 3 = 0^2 and 2 < 3. a(764) = 1 since 764 = 7^3 + 9^2 + 12^2 + 14^2 with 7 + 9 - 12 = 2^2 and 9 < 12. a(1471) = 1 since 1471 = 1^3 + 25^2 + 26^2 + 13^2 with 1 + 25 - 26 = 0^2 and 25 < 26. a(2759) = 1 since 2759 = 5^3 + 8^2 + 13^2 + 49^2 with 5 + 8 - 13 = 0^2 and 8 < 13.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^3-y^2-z^2]&&SQ[x+y-z],r=r+1],{x,0,n^(1/3)},{y,0,Sqrt[(n-x^3)/2]},{z,y,Sqrt[n-x^3-y^2]}];Print[n," ",r];Continue,{n,0,80}]
Comments