A275309 Number of set partitions of [n] with decreasing block sizes.
1, 1, 1, 3, 4, 11, 36, 82, 239, 821, 3742, 10328, 42934, 156070, 729249, 4025361, 15032099, 68746675, 334541624, 1645575386, 9104991312, 65010298257, 282768687257, 1616844660914, 8660050947383, 53262316928024, 309119883729116, 2185141720645817
Offset: 0
Keywords
Examples
a(3) = 3: 123, 12|3, 13|2. a(4) = 4: 1234, 123|4, 124|3, 134|2. a(5) = 11: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 1345|2, 134|25, 135|24, 145|23.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..717
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+ `if`(i>n, 0, b(n-i, i-1)*binomial(n-1, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n - 1, i - 1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 21 2017, translated from Maple *)