A275310 Number of set partitions of [n] with nonincreasing block sizes.
1, 1, 2, 4, 11, 30, 102, 346, 1353, 5444, 24170, 110082, 546075, 2777828, 15099359, 84491723, 499665713, 3035284304, 19375261490, 126821116410, 866293979945, 6072753348997, 44193947169228, 329387416656794, 2542173092336648, 20069525888319293
Offset: 0
Keywords
Examples
a(3) = 4: 123, 12|3, 13|2, 1|2|3. a(4) = 11: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 14|2|3, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..612
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i))) end: a:= n-> b(n$2): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, 1, Min[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)