A275311 Number of set partitions of [n] with nondecreasing block sizes.
1, 1, 2, 3, 7, 12, 43, 89, 363, 1096, 4349, 14575, 77166, 265648, 1369284, 6700177, 33526541, 162825946, 1034556673, 5157939218, 33054650345, 206612195885, 1244742654646, 8071979804457, 62003987375957, 381323590616995, 2827411772791596, 22061592185044910
Offset: 0
Keywords
Examples
a(3) = 3: 123, 1|23, 1|2|3. a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|234, 1|2|34, 1|2|3|4. a(5) = 12: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345, 1|23|45, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..617
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j)*binomial(n-1, j-1), j=i..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..35);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)