cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275066 First differences of A275315.

Original entry on oeis.org

945, 1575, 2520, 1008, 4500, 2640, 4416, 51696, -2592, 2160, 9504, 5616, 28080, 18720, -8280, 24660, 8100, 18576, 4464, 15840, 5184, 123228, 26460, 25704, 3024, 68400, 31203, 31293, 15264, 110880, 12960, 9720, 16200, -25920, 77760, 35640, 71880, 57288, 49032, 97200
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 29 2016

Keywords

Comments

The terms represent differences between consecutive amicable pair averages given in A275315.
Interestingly, the first two odd abundant numbers begin this sequence: a(1) = 945 = A005231(1) and a(2) = 1575 = A005231(2).
Of the first 141 terms, 104 are positive, 36 are negative, 1 is zero [specifically, a(137) = 0], 4 are odd, 137 are even, 138 have an absolute value that is an abundant number, 2 are deficient numbers [specifically, a(27) = 31203 and a(28) = 31293], 2 numbers occur twice [specifically, a(52) = a(59) = 1728 and a(30) = a(100) = 110880], and every number is divisible by 3.
a(n) = A275472(n) for 41 of the first 141 terms: n = 1, 2, 3, 4, 5, 6, 7, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39, 43, 44, 48, 49, 50, 57, 58, 59, 64, 65, 95, 120, 121.
a(n) = -A275472(n) for 9 of the first 141 indices: n = 15, 41, 46, 55, 67, 70, 81, 86, 141.

Examples

			a(9) = A275315(10) - A275315(9) = 66960 - 69552 = -2592.
		

Crossrefs

Formula

a(n) = A275315(n+1) - A275315(n).

A275316 Average of amicable pairs (x,y), ordered by the sum x+y given in A259953.

Original entry on oeis.org

252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 66960, 69120, 69552, 78624, 84240, 112320, 122760, 131040, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 648000, 657720, 673920, 725760, 761400, 833280, 890568, 939600
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 22 2016

Keywords

Comments

Each term represents the midpoint of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The length and radius of each interval can be found in A275469 and A275470, respectively.
This sequence is monotonic (specifically, nondecreasing), since x+y (A259953) is nondecreasing. For a nonmonotonic ordering of these averages, see A275315.
It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd). If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.

Examples

			a(  1) = (     220 +      284)/2 =      504/2 =      252.
a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
...      ...                 ...          ...         ...
a(  9) = (   66928 +    66992)/2 =   133920/2 =    66960.
a( 10) = (   67095 +    71145)/2 =   138240/2 =    69120.
a( 11) = (   63020 +    76084)/2 =   139104/2 =    69552.
...      ...                 ...          ...         ...
a( 15) = (  122368 +   123152)/2 =   245520/2 =   122760.
a( 16) = (  122265 +   139815)/2 =   262080/2 =   131040.
a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
...      ...                 ...          ...         ...
a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
a( 33) = (  643336 +   652664)/2 =  1296000/2 =   648000.
...      ...                 ...          ...         ...
a(107) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
a(108) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
...      ...                 ...          ...         ...
a(139) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(140) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
...      ...                 ...          ...         ...
		

Crossrefs

Programs

  • Mathematica
    With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Mean, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]] (* Michael De Vlieger, Oct 22 2017 *)

Formula

a(n) = [A260086(n) + A260087(n)]/2 = A259953(n)/2.
Showing 1-2 of 2 results.