cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275324 Expansion of (x*(1-4*x^2)^(-3/2) + (1-4*x^2)^(-1/2) + x + 1)/2.

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 10, 70, 35, 315, 126, 1386, 462, 6006, 1716, 25740, 6435, 109395, 24310, 461890, 92378, 1939938, 352716, 8112468, 1352078, 33801950, 5200300, 140408100, 20058300, 581690700, 77558760, 2404321560, 300540195, 9917826435, 1166803110, 40838108850
Offset: 0

Views

Author

Peter Luschny, Aug 15 2016

Keywords

Crossrefs

Programs

  • Maple
    st := (x*(1-4*x^2)^(-3/2)+(1-4*x^2)^(-1/2)+x+1)/2: series(st,x,36):
    PolynomialTools:-CoefficientList(convert(%,polynom),x);
  • Mathematica
    Table[If[n<2,1,n!/Quotient[n,2]!^2/2], {n,0,30}]
    CoefficientList[Series[(x*(1 - 4*x^2)^(-3/2) + (1 - 4*x^2)^(-1/2) + x + 1)/2, {x, 0, 50}], x] (* G. C. Greubel, Aug 15 2016 *)
  • Sage
    def A275324():
        r, n = 2, 1
        yield 1
        yield 1
        while True:
            n += 1
            r *= 4/n if is_even(n) else n
            yield r // 4
    a = A275324(); print([next(a) for i in range(16)])

Formula

Interweaved from (1+(1-4*x)^(-1/2))/2 (compare A088218 & A001700) and (1+(1-4*x)^(-3/2))/2 (compare A033876).
E.g.f.: (1 + x)*(1 + BesselI(0, 2*x))/2.
For a recurrence see the Sage script.
a(n) = A056040(n)/2 for n>=2.
From Amiram Eldar, Mar 04 2023: (Start)
Sum_{n>=0} 1/a(n) = 2/3 + 16*Pi/(9*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 8/3 - 8*Pi/(9*sqrt(3)). (End)