cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275329 a(n) = (2+[n/2])*n!/((1+[n/2])*[n/2]!^2).

Original entry on oeis.org

2, 2, 3, 9, 8, 40, 25, 175, 84, 756, 294, 3234, 1056, 13728, 3861, 57915, 14300, 243100, 53482, 1016158, 201552, 4232592, 764218, 17577014, 2912168, 72804200, 11143500, 300874500, 42791040, 1240940160, 164812365, 5109183315, 636438060, 21002455980, 2463251010
Offset: 0

Views

Author

Peter Luschny, Sep 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (2+iquo(n,2))*n!/((1+iquo(n,2))*iquo(n, 2)!^2):
    seq(a(n), n=0..34);
  • Sage
    def A275329():
        x, n, k = 1, 1, 2
        while True:
            yield x * k
            if is_odd(n):
                x *= n
            else:
                k += 1
                x = (x<<2)//(n+2)
            n += 1
    a = A275329(); print([next(a) for _ in range(37)])

Formula

a(n) = A056040(n)*(2+[n/2])/(1+[n/2]).
a(n) = A057977(n)*A008619(n+2).
a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1).
a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2.
a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n).
Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - Amiram Eldar, Aug 20 2022