A275329 a(n) = (2+[n/2])*n!/((1+[n/2])*[n/2]!^2).
2, 2, 3, 9, 8, 40, 25, 175, 84, 756, 294, 3234, 1056, 13728, 3861, 57915, 14300, 243100, 53482, 1016158, 201552, 4232592, 764218, 17577014, 2912168, 72804200, 11143500, 300874500, 42791040, 1240940160, 164812365, 5109183315, 636438060, 21002455980, 2463251010
Offset: 0
Keywords
Programs
Formula
a(n) = A056040(n)*(2+[n/2])/(1+[n/2]).
a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1).
a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2.
a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n).
Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - Amiram Eldar, Aug 20 2022