A275366 Nearest integer to 1/erfc(n/sqrt(2)).
1, 3, 22, 370, 15787, 1744278, 506797346, 390682215445, 803734397655348, 4430313100526836693, 65618063552490194383194, 2616897361902846669558232538, 281455127862349591601857362987344, 81737217988908649002650313009555641847, 64155724364921456082725604130103414484969173
Offset: 0
Keywords
Examples
A "five-sigma" event (five standard deviations away from the mean) has a 1 in 1744278 chance of occurring. This is the requirement in particle physics for an anomaly to be recognized as a real effect, not merely a statistical fluctuation.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..67
- Wikipedia, 68-95-99.7 rule
Crossrefs
Programs
-
Magma
[Round(1/Erfc(n/Sqrt(2))): n in [1..20]]; // G. C. Greubel, Oct 07 2018
-
Mathematica
Table[Round[1/Erfc[n/Sqrt[2]]], {n, 1, 16}]
-
PARI
default(realprecision, 100); for(n=1, 20, print1(round(1/erfc(n/sqrt(2))), ", ")) \\ G. C. Greubel, Oct 07 2018
Formula
a(n) = round( 1/erfc(n/sqrt(2)) ).
Extensions
a(0)=1 prepended by Greg Huber, Jul 05 2022
Comments