A275426 Number of set partitions of [n] such that eight is a multiple of each block size.
1, 1, 2, 4, 11, 31, 106, 372, 1500, 6220, 28696, 136016, 702802, 3727946, 21253324, 124231096, 772458366, 4918962462, 33061094812, 227303566648, 1639389311906, 12082068225466, 92951836390172, 729991698024568, 5960615982017512, 49636995406898376
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..604
- Wikipedia, Partition of a set
Crossrefs
Column k=8 of A275422.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 4, 8])) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 4, 8}}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
Formula
E.g.f.: exp(x+x^2/2+x^4/24+x^8/8!).