A275474 Numbers n for which e_n(2*i)=e_n(2*i+1), for all i>=1, where e_n(k)>=0 denote the exponent of prime(k) in the prime power representation of n.
1, 2, 4, 8, 15, 16, 30, 32, 60, 64, 77, 120, 128, 154, 221, 225, 240, 256, 308, 437, 442, 450, 480, 512, 616, 874, 884, 899, 900, 960, 1024, 1155, 1232, 1517, 1748, 1768, 1798, 1800, 1920, 2021, 2048, 2310, 2464, 3034, 3127, 3315, 3375, 3496, 3536, 3596, 3600
Offset: 1
Keywords
Examples
1 is a member, since all e_1(k)=0; Powers 2^m, m>=1, are members, since e_2^m(k)=0, for all k>=2; 15 is a member, since e_15(2)*e_15(3)=1; n = 2983500 is a member, since e_n(1)=2, e_n(2)=e_n(3)=3 and e_n(6)=e_n(7)=1, all other e_n(k)=0.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
is(n)=my(f=factor(n>>valuation(n,2))); if (#f~%2, return(0)); for(i=1,#f~/2, if(f[2*i-1,2]!=f[2*i,2] || nextprime(f[2*i-1,1]+1)!=f[2*i,1], return(0))); for(i=1,#f~/2, if(primepi(f[2*i,1])%2==0, return(0))); 1 \\ Charles R Greathouse IV, Jul 30 2016
-
PARI
list(lim)=my(v=List([1,2]),p=3,pStart=2,pEnd,start=2,end,nStart,t); lim\=1; forprime(q=5,sqrtint(lim+1)+1, p=if(p, listput(v,p*q); 0, q)); end=pEnd=#v; for(n=2,logint(lim,2), nStart=end+1; for(i=start,end, for(j=pStart,pEnd, t=v[i]*v[j]; if(t>lim, break); listput(v, t))); start=nStart; end=#v); Set(v) \\ Charles R Greathouse IV, Jul 30 2016
Extensions
More terms from Peter J. C. Moses, Jul 29 2016
Comments