cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275474 Numbers n for which e_n(2*i)=e_n(2*i+1), for all i>=1, where e_n(k)>=0 denote the exponent of prime(k) in the prime power representation of n.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 30, 32, 60, 64, 77, 120, 128, 154, 221, 225, 240, 256, 308, 437, 442, 450, 480, 512, 616, 874, 884, 899, 900, 960, 1024, 1155, 1232, 1517, 1748, 1768, 1798, 1800, 1920, 2021, 2048, 2310, 2464, 3034, 3127, 3315, 3375, 3496, 3536, 3596, 3600
Offset: 1

Views

Author

Vladimir Shevelev, Jul 29 2016

Keywords

Comments

There exists a permutation alpha of the sequence such that {alpha(a(n))} is a completely multiplicative function.
Numbers which are the product of zero or more of {2, 3*5, 7*11, 13*17, 19*23, ...} with multiplicity. - Charles R Greathouse IV, Jul 30 2016

Examples

			1 is a member, since all e_1(k)=0;
Powers 2^m, m>=1, are members, since e_2^m(k)=0, for all k>=2;
15 is a member, since e_15(2)*e_15(3)=1;
n = 2983500 is a member, since e_n(1)=2, e_n(2)=e_n(3)=3 and e_n(6)=e_n(7)=1, all other e_n(k)=0.
		

Crossrefs

Programs

  • PARI
    is(n)=my(f=factor(n>>valuation(n,2))); if (#f~%2, return(0)); for(i=1,#f~/2, if(f[2*i-1,2]!=f[2*i,2] || nextprime(f[2*i-1,1]+1)!=f[2*i,1], return(0))); for(i=1,#f~/2, if(primepi(f[2*i,1])%2==0, return(0))); 1 \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    list(lim)=my(v=List([1,2]),p=3,pStart=2,pEnd,start=2,end,nStart,t); lim\=1; forprime(q=5,sqrtint(lim+1)+1, p=if(p, listput(v,p*q); 0, q)); end=pEnd=#v; for(n=2,logint(lim,2), nStart=end+1; for(i=start,end, for(j=pStart,pEnd, t=v[i]*v[j]; if(t>lim, break); listput(v, t))); start=nStart; end=#v); Set(v) \\ Charles R Greathouse IV, Jul 30 2016

Extensions

More terms from Peter J. C. Moses, Jul 29 2016