cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275480 Decimal expansion of B, a constant appearing in an asymptotic formula related to the exponential divisor function sigma^(e).

Original entry on oeis.org

5, 6, 8, 2, 8, 5, 4, 9, 3, 7, 4, 6, 8, 0, 6, 9, 5, 4, 3, 2, 6, 0, 3, 6, 5, 7, 6, 1, 9, 1, 9, 1, 6, 2, 9, 6, 7, 2, 4, 4, 0, 4, 5, 0, 9, 3, 1, 9, 7, 8, 6, 3, 8, 3, 9, 4, 5, 2, 6, 3, 2, 7, 2, 1, 5, 8, 1, 1, 9, 8, 6, 0, 1, 5, 7, 5, 7, 6, 4, 4, 1, 8, 4, 3, 8, 0, 6, 9, 6, 3, 6, 3, 7, 4, 4, 9, 2, 7, 6, 3, 1, 0, 9, 6, 1, 2
Offset: 0

Views

Author

Jean-François Alcover, Jul 29 2016

Keywords

Examples

			0.5682854937...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.11 Abundant numbers density constant p. 126.

Crossrefs

Cf. A072691 (value of the same limit sum with sigma(n) instead of sigma^(e)(n)).

Programs

  • Mathematica
    digits = 10; maxPi = 10^5;
    B = (1/2)*Product[1 + 1/(p*(p^2-1)) - 1/(p^2-1) + (1-1/p)*((Log[-(1/p^2)] - Log[1/p^2] + QPolyGamma[0, -(Log[-(1/p^2)]/Log[p]), p] - QPolyGamma[0, -(Log[1/p^2]/Log[p]), p])/(2*Log[p])), {p,Prime[Range[maxPi]]}];
    RealDigits[N[B] // Chop, 10, digits][[1]]
    $MaxExtraPrecision = 2000; Do[m = 2000; Clear[f]; f[p_] := (1 + 1/(p*(p^2 - 1)) - 1/(p^2 - 1) + (1 - 1/p)*Sum[p^k/(p^(2 k) - 1), {k, 2, kmax}]); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2]/2 * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 112]]], {kmax, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)

Formula

B = lim_{N->inf} (1/N^2) * Sum_{n=1..N} sigma^(e)(n), where sigma^(e)(n) is the sum of all exponential divisors of n.
B = (1/2) * Product_{p prime} (1 + 1/(p*(p^2 - 1)) - 1/(p^2 - 1) + (1 - 1/p)*Sum_{k>=2} p^k/(p^(2k)-1)).

Extensions

More digits from Robert G. Wilson v, Feb 25 2019
More digits from Vaclav Kotesovec, Jun 19 2020