cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051377 a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012

Examples

			a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
		

Crossrefs

Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.

Programs

  • GAP
    A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]),d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
  • Haskell
    a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
       sum_e p e = sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A051377 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            add(p^d,d=numtheory[divisors](e)) ;
            a := a*% ;
        end do:
        a ;
    end proc:
    seq(A051377(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023

Extensions

More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009

A307042 Partial sums of the exponential divisors sum function: Sum_{k=1..n} esigma(k), where esigma is A051377.

Original entry on oeis.org

1, 3, 6, 12, 17, 23, 30, 40, 52, 62, 73, 91, 104, 118, 133, 155, 172, 196, 215, 245, 266, 288, 311, 341, 371, 397, 427, 469, 498, 528, 559, 593, 626, 660, 695, 767, 804, 842, 881, 931, 972, 1014, 1057, 1123, 1183, 1229, 1276, 1342, 1398, 1458, 1509, 1587, 1640
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Accumulate[Array[esigma, 60]] (* after Jean-François Alcover at A051377 *)

Formula

a(n) ~ B * n^2, where B = 0.5682854937... (A275480).

A327574 Decimal expansion of the constant that appears in the asymptotic formula for average order of the infinitary divisors sum function (A049417).

Original entry on oeis.org

7, 3, 0, 7, 1, 8, 2, 4, 2, 1, 2, 7, 3, 8, 4, 2, 2, 5, 8, 3, 8, 9, 7, 5, 4, 6, 8, 1, 7, 3, 5, 3, 0, 1, 6, 1, 9, 5, 7, 2, 5, 6, 4, 3, 3, 8, 6, 1, 7, 2, 7, 8, 6, 9, 7, 0, 7, 3, 3, 6, 7, 6, 2, 3, 0, 1, 0, 7, 9, 8, 8, 3, 3, 2, 8, 0, 0, 5, 3, 4, 6, 3, 7, 0, 2, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

The asymptotic mean of the infinitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A049417(k)/k = 1.461436... is twice this constant. - Amiram Eldar, Jun 13 2020

Examples

			0.730718242127384225838975468173530161957256433861727...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A013661 (corresponding constant for all divisors), A275480 (exponential), A306633 (unitary), A307160 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Sum[Log[1 + x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327566(k)/k^2.
Equals (1/2) * Product_{P} (1 + 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
Showing 1-3 of 3 results.