A275485 Number of integer lattice points from an n X n square in R^2 centered at the origin that are closer (measured using the Euclidean metric) to the origin than to any of the four sides of the square.
1, 1, 1, 1, 9, 9, 9, 9, 21, 25, 25, 25, 37, 45, 49, 49, 69, 69, 77, 81, 101, 109, 117, 117, 141, 149, 157, 165, 189, 197, 205, 213, 241, 261, 269, 269, 305, 321, 333, 341, 377, 385, 401, 413, 449, 465, 481, 489, 529, 545
Offset: 1
Keywords
References
- N. R. Baeth, L. Luther and R. McKee, Variations on a Putnam Problem, preprint, 2016.
Crossrefs
Cf. A000328.
Programs
-
Maple
A275485:=n->(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*add(ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2), i=ceil(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)): seq(A275485(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2016
-
PARI
a(n)=(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*sum(i=ceil(-n*(sqrt(2)-1)/2),floor(n*(sqrt(2)-1)/2), ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2)); \\ Joerg Arndt, Sep 27 2016
Formula
a(n) = (2*floor(n*(sqrt(2)-1)/2)+1)^2+4*Sum_{i=ceiling(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)} ceiling(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2).
Comments