cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275485 Number of integer lattice points from an n X n square in R^2 centered at the origin that are closer (measured using the Euclidean metric) to the origin than to any of the four sides of the square.

Original entry on oeis.org

1, 1, 1, 1, 9, 9, 9, 9, 21, 25, 25, 25, 37, 45, 49, 49, 69, 69, 77, 81, 101, 109, 117, 117, 141, 149, 157, 165, 189, 197, 205, 213, 241, 261, 269, 269, 305, 321, 333, 341, 377, 385, 401, 413, 449, 465, 481, 489, 529, 545
Offset: 1

Views

Author

Nicholas Baeth, Sep 26 2016

Keywords

Comments

There is a formula, but no closed form, for computing the entries of the sequence.

References

  • N. R. Baeth, L. Luther and R. McKee, Variations on a Putnam Problem, preprint, 2016.

Crossrefs

Cf. A000328.

Programs

  • Maple
    A275485:=n->(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*add(ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2), i=ceil(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)): seq(A275485(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2016
  • PARI
    a(n)=(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*sum(i=ceil(-n*(sqrt(2)-1)/2),floor(n*(sqrt(2)-1)/2), ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2)); \\ Joerg Arndt, Sep 27 2016

Formula

a(n) = (2*floor(n*(sqrt(2)-1)/2)+1)^2+4*Sum_{i=ceiling(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)} ceiling(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2).