A275504 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.
1, 2, 2, 5, 9, 3, 14, 54, 16, 6, 41, 324, 80, 28, 12, 122, 1944, 400, 136, 56, 24, 365, 11664, 2000, 656, 232, 104, 48, 1094, 69984, 10000, 3168, 988, 516, 200, 96, 3281, 419904, 50000, 15296, 4180, 2628, 1168, 380, 192, 9842, 2519424, 250000, 73856, 17712
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..2..0. .0..1..0..0 ..0..1..2..0. .1..2..1..1. .1..1..2..2. .0..1..2..0. .1..1..2..2 ..1..1..2..0. .1..2..1..2. .1..2..2..1. .1..2..0..1. .1..2..2..1 ..2..2..0..1. .0..0..0..2. .2..2..0..0. .1..2..0..1. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = a(n-1) +2*a(n-2) -a(n-4) for n>6
k=3: a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -4*a(n-4) +3*a(n-5) +a(n-6) -a(n-7) for n>11
k=4: [order 16] for n>20
k=5: [order 32] for n>36
k=6: [order 64] for n>68
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>2
n=3: a(n) = 5*a(n-1) for n>2
n=4: a(n) = 4*a(n-1) +4*a(n-2)
n=5: a(n) = 3*a(n-1) +5*a(n-2) +a(n-3)
n=6: a(n) = 3*a(n-1) +10*a(n-2) +4*a(n-3) -4*a(n-4) for n>5
n=7: a(n) = 3*a(n-1) +18*a(n-2) +11*a(n-3) -23*a(n-4) -4*a(n-5) for n>6
Comments