A275514 Triangle read by rows: the coefficient [t^k] of the Ehrhart polynomial of the 2-hypersimplex in dimension n.
1, 1, -1, 1, 0, 0, 1, 2, 1, 0, 1, 5, 5, 0, 0, 1, 9, 15, 1, 0, 0, 1, 14, 35, 7, 0, 0, 0, 1, 20, 70, 28, 1, 0, 0, 0, 1, 27, 126, 84, 9, 0, 0, 0, 0, 1, 35, 210, 210, 45, 1, 0, 0, 0, 0, 1, 44, 330, 462, 165, 11, 0, 0, 0, 0, 0, 1, 54, 495, 924, 495, 66, 1, 0, 0, 0, 0, 0, 1, 65, 715
Offset: 1
Examples
The triangle starts in row n=1 with coefficients 0<=k<n as: 1; 1, -1; 1, 0, 0; 1, 2, 1, 0; 1, 5, 5, 0, 0; 1, 9, 15, 1, 0, 0; 1, 14, 35, 7, 0, 0, 0; 1, 20, 70, 28, 1, 0, 0, 0; 1, 27, 126, 84, 9, 0, 0, 0, 0; 1, 35, 210, 210, 45, 1, 0, 0, 0, 0; 1, 44, 330, 462, 165, 11, 0, 0, 0, 0, 0; 1, 54, 495, 924, 495, 66, 1, 0, 0, 0, 0, 0; 1, 65, 715, 1716, 1287, 286, 13, 0, 0, 0, 0, 0, 0;
Links
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 10.
- Nan Li, Ehrhart h*-vectors of hypersimplices, Discr. Comp. Geom. 48 (2012) 847-878, Eq. (1.1)
Crossrefs
Programs
-
Maple
subki := proc(n,r,l) local i,t; add(t^i,i=0..l-1) ; %^n ; expand(%) ; coeff(%,t,r) ; end proc: hstard := proc(d,k,n) add((-1)^i*binomial(n,i)*subki(n, (k-i)*d-i,k-i) ,i=0..k-1) ; end proc: A275514 := proc(n,k) hstard(k,2,n) end proc: