cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275521 Number of (n+floor(n/2))-block bicoverings of an n-set.

Original entry on oeis.org

1, 0, 1, 4, 3, 40, 15, 420, 105, 5040, 945, 69300, 10395, 1081080, 135135, 18918900, 2027025, 367567200, 34459425, 7856748900, 654729075, 183324141000, 13749310575, 4638100767300, 316234143225, 126493657290000, 7905853580625, 3699939475732500, 213458046676875
Offset: 0

Views

Author

Alois P. Heinz, Jul 31 2016

Keywords

Comments

There are no bicoverings of an n-set with more than n+floor(n/2) blocks.

Examples

			a(2) = 1: 1|12|2.
a(3) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
a(4) = 3: 1|12|2|3|34|4, 1|13|2|24|3|4, 1|14|2|23|3|4.
		

Crossrefs

Right border of triangle A059443.
Bisections give: A001147, 4*A000457(n-1) (for n>0).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 4, 3]
           [n+1], ((8*n-41)*a(n-1) +(6*n^2-12*n-12)*a(n-2)
           -(n-2)*(8*n-17)*a(n-3)) / (6*n-24))
        end:
    seq(a(n), n=0..30);

Formula

a(n) = A059443(n,n+floor(n/2)).