cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245667 Number T(n,k) of sequences in {1,...,n}^n with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 10, 16, 1, 0, 35, 175, 45, 1, 0, 126, 1771, 1131, 96, 1, 0, 462, 17906, 23611, 4501, 175, 1, 0, 1716, 184920, 461154, 161876, 13588, 288, 1, 0, 6435, 1958979, 8837823, 5179791, 759501, 34245, 441, 1, 0, 24310, 21253375, 169844455, 157279903, 36156355, 2785525, 75925, 640, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2014

Keywords

Comments

Sum_{k=0..1} T(n,k) = A088218(n).
Sum_{k=0..2} T(n,k) = A239295(n).
Sum_{k=0..3} T(n,k) = A239299(n).
Sum_{k=1..n} k * T(n,k) = A275576(n).

Examples

			T(3,1) = 10: [1,1,1], [2,1,1], [2,2,1], [2,2,2], [3,1,1], [3,2,1], [3,2,2], [3,3,1], [3,3,2], [3,3,3].
T(3,3) = 1: [1,2,3].
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    3,      1;
  0,   10,     16,      1;
  0,   35,    175,     45,      1;
  0,  126,   1771,   1131,     96,     1;
  0,  462,  17906,  23611,   4501,   175,   1;
  0, 1716, 184920, 461154, 161876, 13588, 288,  1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A088218 or A001700(n-1) for n>0, A268869, A268870, A268871, A268872, A268873, A268874, A268875, A268876, A268877.
Main diagonal gives A000012.
T(n,n-1) gives A152618(n) for n>0.
T(n,n-2) gives A268936(n).
T(2n,n) gives A268949(n).
Row sums give A000312.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1, [seq(min(l[j],
          `if`(j=1 or l[j-1] `if`(k=0, `if`(n=0, 1, 0), b(n, [n$k])):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[b[n-1, Table[Min[l[[j]], If[j == 1 || l[[j-1]]Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)

A275577 Sums of lengths of longest (not necessarily strictly) increasing subsequences of all n^n length-n lists of integers from {1,2,...,n}.

Original entry on oeis.org

1, 7, 63, 716, 10050, 167707, 3246985, 71601112, 1772086842, 48644809445, 1466863148619, 48202848917302, 1714563272612502
Offset: 1

Views

Author

Jeffrey Shallit, Aug 02 2016

Keywords

Examples

			For n = 2 there are 4 such sequences:  (1,1), (1,2), (2,1), and (2,2).
The corresponding lengths of longest (not necessarily strictly) increasing subsequences of these is 2, 2, 1, 2, so a(2) =7.
		

Crossrefs

Cf. A003316, which computes the same thing for permutations.
Cf. A275576, which computes the same thing for strictly increasing subsequences.

Extensions

a(8)-a(13) from Alois P. Heinz, Nov 02 2018
Showing 1-2 of 2 results.