A275580 Add square root of sum of terms.
1, 2, 3, 5, 8, 12, 17, 23, 31, 41, 52, 65, 81, 99, 119, 142, 168, 197, 229, 264, 303, 346, 392, 442, 497, 556, 619, 687, 760, 838, 921, 1009, 1103, 1203, 1308, 1419, 1537, 1661, 1791, 1928, 2072, 2223, 2381, 2546, 2719, 2900, 3088
Offset: 0
Examples
a(3) = a(2) + floor(sqrt(1 + 2)) = 2 + 1 = 3; a(4) = a(3) + floor(sqrt(1 + 2 + 3)) = 3 + 2 = 5.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Robert Israel, Formulas for A275580
- Christian Krause, LODA
- Index entries for linear recurrences with constant coefficients, signature (3,-4,5,-6,5,-4,3,-1).
Programs
-
Maple
G:= (x^4-x^3+x^2-x+1)/((x^5+x^3-x^2-1)*(x-1)^3): S:= series(G,x,101): seq(coeff(S,x,j),j=0..100); # Robert Israel, Aug 09 2016
-
Mathematica
a = {1}; Do[AppendTo[a, a[[k]] + Floor@ Sqrt@ Total@ a], {k, 46}]; a (* Michael De Vlieger, Aug 03 2016 *)
-
PARI
lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = va[n-1] + floor(sqrt(sum(k=1, n-1, va[k])));); va;} \\ Michel Marcus, Aug 02 2016
Formula
G.f.: (1-x+x^2-x^3+x^4)/((1-x)^3(1+x^2-x^3-x^5)). See link "Formulas for A275580". - Robert Israel, Aug 09 2016
a(n) = n + 1 + Sum_{i=0..n} floor((floor(i^2 / 3) + i) / 4); derived from corresponding LODA program (see link). - Hugo van der Sanden, Feb 24 2021
Comments