cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275580 Add square root of sum of terms.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 17, 23, 31, 41, 52, 65, 81, 99, 119, 142, 168, 197, 229, 264, 303, 346, 392, 442, 497, 556, 619, 687, 760, 838, 921, 1009, 1103, 1203, 1308, 1419, 1537, 1661, 1791, 1928, 2072, 2223, 2381, 2546, 2719, 2900, 3088
Offset: 0

Views

Author

Hugo van der Sanden, Aug 02 2016

Keywords

Comments

a(0) = 1; a(n) = a(n-1) + floor(sqrt(Sum_{i=0..n-1} a(i))).
This appears to give asymptotically a(n) = n^3/36, sum of terms n^4/144, regardless of the starting value a(0).

Examples

			a(3) = a(2) + floor(sqrt(1 + 2)) = 2 + 1 = 3;
a(4) = a(3) + floor(sqrt(1 + 2 + 3)) = 3 + 2 = 5.
		

Programs

  • Maple
    G:= (x^4-x^3+x^2-x+1)/((x^5+x^3-x^2-1)*(x-1)^3):
    S:= series(G,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Aug 09 2016
  • Mathematica
    a = {1}; Do[AppendTo[a, a[[k]] + Floor@ Sqrt@ Total@ a], {k, 46}]; a (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = va[n-1] + floor(sqrt(sum(k=1, n-1, va[k])));); va;} \\ Michel Marcus, Aug 02 2016

Formula

G.f.: (1-x+x^2-x^3+x^4)/((1-x)^3(1+x^2-x^3-x^5)). See link "Formulas for A275580". - Robert Israel, Aug 09 2016
a(n) = n + 1 + Sum_{i=0..n} floor((floor(i^2 / 3) + i) / 4); derived from corresponding LODA program (see link). - Hugo van der Sanden, Feb 24 2021