cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335869 Primitive terms of A275608.

Original entry on oeis.org

3, 8, 13, 20, 25, 28, 29, 35, 43, 44, 47, 49, 53, 55, 59, 67, 68, 76, 79, 83, 85, 92, 95, 97, 101, 107, 109, 115, 119, 121, 124, 127, 133, 137, 148, 149, 151, 155, 161, 164, 179, 181, 185, 187, 199, 205, 209, 217, 223, 229, 241, 244, 253, 259, 269, 271, 277
Offset: 1

Views

Author

J. Lowell, Jun 27 2020

Keywords

Examples

			8 is in the sequence because 8 is in A275608, but none of 1, 2, and 4 are in A275608.
		

Crossrefs

A013584 Smallest m such that 0!+1!+...+(m-1)! is divisible by n, or 0 if no such m exists.

Original entry on oeis.org

1, 2, 0, 3, 4, 0, 6, 0, 0, 4, 6, 0, 0, 6, 0, 0, 5, 0, 7, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 5, 0, 0, 22, 7, 0, 0, 16, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 12, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 42, 22, 0, 0, 6, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael R. Mudge (Amsorg(AT)aol.com)

Keywords

Comments

From Robert Israel, Nov 14 2016: (Start)
a(n) < n for n > 2.
If a(n) = 0, then a(mn) = 0 for all m>=2. (End)

References

  • M. R. Mudge, Smarandache Notions Journal, University of Craiova, Vol. VII, No. 1, 1996.

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,r,m;
      r:= 1; t:= 1;
      for m from 1 do
        r:= r*m mod n;
        if r = 0 then return 0 fi;
        t:= t + r mod n;
        if t = 0 then return m+1 fi;
      od;
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Nov 14 2016
  • Mathematica
    a[n_] := Module[{t, r, m}, r = 1; t = 1; For[m = 1, True, m++, r = Mod[r*m, n]; If[r == 0, Return[0]]; t = Mod[t+r, n]; If[t == 0, Return[m+1]]]];
    Array[a, 100] (* Jean-François Alcover, Apr 12 2019, after Robert Israel *)

A049045 Domain of A049044.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 14, 17, 19, 22, 23, 31, 34, 37, 38, 41, 46, 61, 62, 71, 73, 74, 77, 82, 89, 103, 113, 122, 131, 139, 142, 146, 154, 157, 163, 167, 173, 178, 191, 193, 197, 206, 211, 226, 227, 233, 239, 251, 257, 262, 263, 278, 283, 293, 307, 313, 314, 317
Offset: 1

Views

Author

Keywords

Comments

Positive integers that divide some positive element of A003422.
From Robert Israel, Nov 14 2016: (Start)
Numbers n such that A013584(n) > 0.
If n is in the sequence, then so are all divisors of n. (End)

Crossrefs

Complement of A275608.

Programs

  • Maple
    filter:= proc(n) local t,r,m;
      r:= 1; t:= 1;
      for m from 1 do
        r:= r*m mod n;
        if r = 0 then return false fi;
        t:= t + r mod n;
        if t = 0 then return true fi;
      od;
    end proc:
    filter(1):= true:
    select(filter, [$1..1000]); # Robert Israel, Nov 14 2016
  • Mathematica
    okQ[n_] := Module[{t, r, m}, r = 1; t = 1; For[m = 1, True, m++, r = Mod[r*m, n]; If[r == 0, Return[False]]; t = Mod[t + r, n]; If[t == 0, Return[True]]]];
    okQ[1] = True;
    Select[Range[1000], okQ] (* Jean-François Alcover, Apr 10 2019, after Robert Israel *)
Showing 1-3 of 3 results.