cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275612 Restricted Perrin pseudoprimes (Adams and Shanks definition).

Original entry on oeis.org

27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121, 7279379941, 7825642579
Offset: 1

Views

Author

Dana Jacobsen, Aug 03 2016

Keywords

Comments

These are composites which have an acceptable signature mod n for the Perrin sequence (A001608). See Adams and Shanks (1982), page 261.
They add additional conditions to the unrestricted Perrin test (A013998) and the minimal restricted test (A018187).
The quadratic form restriction for the I-signature (equation 29 in Adams and Shanks (1982)) is sometimes removed. No pseudoprimes are currently known that match the I-signature congruences. Adams and Shanks note that objections could be raised to its inclusion in the test, and Arno (1991) and Grantham (2000) both drop it.
Kurtz et al. (1986) call these "acceptable composites for the Perrin sequence". - N. J. A. Sloane, Jul 28 2019

Crossrefs

Cf. A001608 (Perrin sequence), A013998 (unrestricted Perrin pseudoprimes), A018187 (minimal restricted Perrin pseudoprimes)

Programs

  • PARI
    perrin2(n) = {
      my(M,L,S,j,A,B,C,D);
      M=Mod( [0,1,0; 0,0,1; 1,1,0], n)^n;
      L=Mod( [0,1,0; 0,0,1; 1,0,-1], n)^n;
      S=[ 3*L[3,2]-L[3,3],   3*L[2,2]-L[2,3],   3*L[1,2]-L[1,3], \
          3*M[3,1]+2*M[3,3], 3*M[1,1]+2*M[1,3], 3*M[2,1]+2*M[2,3] ];
      if (S[5] != 0 || S[2] != n-1,return(0));
      j = kronecker(-23,n);
      if (j == -1, B=S[3];A=1+3*B-B^2;C=3*B^2-2; if(S[1]==A && S[3]==B && S[4]==B && S[6] == C && B != 3 && B^3-B==1, return(1), return(0)));
      if (S[1] == 1 && S[3] == 3 && S[4] == 3 && S[6] == 2, return(1));
      if (j == 1 && S[1] == 0 && S[6] == n-1 && S[3] != S[4] && S[3]+S[4] == n-3 && (S[3]-S[4])^2 == Mod(-23,n), return(1));
      return(0);
    } \\ Dana Jacobsen, Aug 03 2016
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,2); } 1e8; # _Dana Jacobsen, Aug 03 2016