A275660 Numbers n such that sigma(n) = Sum_{j=1..k} d(n^j) for some k, where sigma(n) is the sum of the divisors of n and d(n) is the number of divisors of n.
1, 13, 19, 34, 43, 53, 58, 89, 103, 151, 229, 251, 254, 329, 341, 349, 404, 433, 463, 593, 674, 701, 739, 859, 1033, 1223, 1429, 1483, 1506, 1670, 1709, 1826, 1846, 1886, 1889, 1948, 1951, 2067, 2091, 2143, 2255, 2308, 2431, 2699, 3001, 3079, 3319, 3739, 4003, 4093
Offset: 1
Keywords
Examples
d(53^1) + d(53^2) + d(53^3) + d(53^4) + d(53^5) + d(53^6) + d(53^7) + d(53^8) + d(53^9) = 54 = sigma(53).
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
P:= proc(q) local a,k,n; for n from 1 to q do a:=sigma(n); k:=0; while a>0 do k:=k+1; a:=a-tau(n^k); od; if a=0 then print(n); fi; od; end: P(10^9);
Comments