A283757 Numbers n such that phi(n) = Sum_{j=1..k} d(n^j) for some k, where phi(n) is the Euler totient function of n and d(n) is the number of divisors of n.
1, 3, 8, 10, 18, 24, 30, 435, 485, 579, 678, 759, 1052, 1593, 3243, 3857, 3913, 4085, 4445, 4773, 4953, 5685, 6078, 6278, 6322, 6836, 7570, 9823, 10199, 10703, 12474, 12913, 12927, 14180, 14511, 14623, 16958, 17013, 17014, 17174, 17518, 17966, 18238, 19334, 19432
Offset: 1
Keywords
Examples
d(1052) + d(1052^2) + d(1052^3) + d(1052^4) + d(1052^5) + d(1052^6) + d(1052^7) + d(1052^8) = 524 = phi(1052).
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=0; k:=0; while a
-
Mathematica
Select[Range@ 4000, Module[{k = 1, e = EulerPhi@ #, b}, While[Set[b, Sum[DivisorSigma[0, #^j], {j, k}]] < e, k++]; If[b == e, True, False]] &] (* Michael De Vlieger, Mar 17 2017 *)
Comments