cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A283757 Numbers n such that phi(n) = Sum_{j=1..k} d(n^j) for some k, where phi(n) is the Euler totient function of n and d(n) is the number of divisors of n.

Original entry on oeis.org

1, 3, 8, 10, 18, 24, 30, 435, 485, 579, 678, 759, 1052, 1593, 3243, 3857, 3913, 4085, 4445, 4773, 4953, 5685, 6078, 6278, 6322, 6836, 7570, 9823, 10199, 10703, 12474, 12913, 12927, 14180, 14511, 14623, 16958, 17013, 17014, 17174, 17518, 17966, 18238, 19334, 19432
Offset: 1

Views

Author

Paolo P. Lava, Mar 16 2017

Keywords

Comments

Values of k: {1, 1, 1, 1, 1, 1, 1, 4, 9, 9, 4, 5, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 16, 9, 12, 12, 12, 4, 32, 12, 9, 12, 32, 12, 13, 12, 12, 12, 12, 12, 12, 9, ...}. - Michael De Vlieger, Mar 17 2017

Examples

			d(1052) + d(1052^2) + d(1052^3) + d(1052^4) + d(1052^5) + d(1052^6) + d(1052^7) + d(1052^8) = 524 = phi(1052).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=0; k:=0; while a
    				
  • Mathematica
    Select[Range@ 4000, Module[{k = 1, e = EulerPhi@ #, b}, While[Set[b, Sum[DivisorSigma[0, #^j], {j, k}]] < e, k++]; If[b == e, True, False]] &] (* Michael De Vlieger, Mar 17 2017 *)

A283758 Numbers whose sum of divisors is equal to the product of the number of divisors of their k first powers, for some k.

Original entry on oeis.org

5, 22, 23, 102, 110, 382, 497, 510, 517, 527, 719, 1436, 4509, 5039, 6906, 8426, 8786, 9051, 9598, 9741, 9951, 10011, 10505, 10795, 11005, 11431, 11501, 11891, 11995, 12121, 13661, 13777, 13891, 13919, 14101, 14129, 14141, 28780, 31636, 32572, 32756, 33028, 33356
Offset: 1

Views

Author

Paolo P. Lava, Mar 16 2017

Keywords

Comments

Values of k: {2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 5, 3, 3, 6, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...}. - Michael De Vlieger, Mar 17 2017

Examples

			sigma(382) = 576 and d(382) * d(382^2) * d(382^3) = 4 * 9 * 16 = 576;
sigma(9598) = 14400 and d(9598) * d(9598^2) * d(9598^3) * d(9598^4) = 4 * 9 * 16 * 25 = 14400.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=1; k:=0; while a
    				
  • Mathematica
    Select[Range[2, 40000], Module[{k = 1, d = DivisorSigma[1, #], b}, While[Set[b, Product[DivisorSigma[0, #^j], {j, k}]] < d, k++]; If[b == d, True, False]] &] (* Michael De Vlieger, Mar 17 2017 *)

A283759 Numbers whose Euler totient function is equal to the product of the number of divisors of their k first powers, for some k.

Original entry on oeis.org

3, 7, 8, 10, 18, 24, 30, 57, 74, 344, 399, 494, 518, 629, 654, 679, 1154, 2408, 2989, 3048, 3175, 3458, 3789, 4218, 4578, 4890, 5022, 7668, 10602, 13720, 14647, 14701, 14837, 15613, 16133, 17563, 17945, 18335, 19608, 20195, 20358, 21243, 21336, 21423, 22083, 22503
Offset: 1

Views

Author

Paolo P. Lava, Mar 16 2017

Keywords

Comments

Values of k: {1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, ...}. - Michael De Vlieger, Mar 17 2017

Examples

			phi(629) = 576 and d(629) * d(629^2) * d(629^3) = 4 * 9 * 16= 576;
phi(14647) = 14400 and d(14647) * d(14647^2) * d(14647^3) * d(14647^4) = 4 * 9 * 16 * 25 = 14400.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=1; k:=0; while a
    				
  • Mathematica
    Select[Range[2, 25000], Module[{k = 1, e = EulerPhi@ #, b}, While[Set[b, Product[DivisorSigma[0, #^j], {j, k}]] < e, k++]; If[b == e, True, False]] &] (* Michael De Vlieger, Mar 17 2017 *)
Showing 1-3 of 3 results.