A275679 Number of set partitions of [n] with alternating block size parities.
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
Keywords
Examples
a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 3: 1234, 1|23|4, 1|24|3. a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..592
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add( `if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n)) end: a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)): seq(a(n), n=0..35);
-
Mathematica
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)