A275690 G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/3) - x^2)^(1/3) - x^3)^(1/3) - x^4)^(1/3) - x^5)^(1/3) -...- x^n)^(1/3) -..., an infinite series of nested cube roots.
1, 1, 3, 9, 30, 99, 334, 1116, 3744, 12504, 41724, 138840, 461187, 1528554, 5057028, 16699293, 55051065, 181184337, 595400772, 1953715239, 6401926227, 20950064478, 68472011889, 223521012585, 728827015536, 2373846887673, 7723658267667, 25104640758607, 81519763177575, 264463605423009, 857192148657477, 2775964660002954, 8982278557410627, 29040795844301862, 93819208534071840, 302863860771034455, 976981070712962919, 3149327670664845204
Offset: 0
Keywords
Programs
-
PARI
{a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^3 + x^(n+1-k)); polcoeff(A, n)} for(n=0, 40, print1(a(n), ", "))