cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275736 a(n) has base-2 representation with ones in those digit-positions where n contains ones in its factorial base representation, and zeros in all the other positions.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 8, 9, 10, 11, 8, 9, 8, 9, 10, 11, 8, 9, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

Each natural numbers occurs an infinite number of times.
Can be used when computing A275727.

Examples

			22 has factorial base representation "320" (= A007623(22)), which does not contain any "1". Thus a(22) = 0, as the empty sum is 0.
35 has factorial base representation "1121" (= A007623(35)). Here 1's occur in the following positions, when counted from right (starting with 0 for the least significant position): 0, 2 and 3. Thus a(35) = 2^0 + 2^2 + 2^3 = 1*4*8 = 13.
		

Crossrefs

Left inverse of A059590.
Cf. A255411 (indices of zeros).
Cf. also A275732.

Programs

  • Mathematica
    nn = 120; m = 1; While[Factorial@ m < nn, m++]; m; Map[FromDigits[#, 2] &[IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] /. k_ /; k != 1 -> 0] &, Range[0, nn]] (* Michael De Vlieger, Aug 11 2016, Version 10.2 *)

Formula

If A257261(n) = 0, then a(n) = 0, otherwise a(n) = A000079(A257261(n)-1) + a(A275730(n, A257261(n)-1)). [Here A275730(n,p) is a bivariate function that "clears" the digit at zero-based position p in the factorial base representation of n].
Other identities and observations. For all n >= 0:
a(n) = A048675(A275732(n)).
A000120(a(n)) = A257511(n).
a(A007489(n)) = A000225(n).
a(A059590(n)) = n.
a(A255411(n)) = 0.