A275736 a(n) has base-2 representation with ones in those digit-positions where n contains ones in its factorial base representation, and zeros in all the other positions.
0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 8, 9, 10, 11, 8, 9, 8, 9, 10, 11, 8, 9, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0
Offset: 0
Examples
22 has factorial base representation "320" (= A007623(22)), which does not contain any "1". Thus a(22) = 0, as the empty sum is 0. 35 has factorial base representation "1121" (= A007623(35)). Here 1's occur in the following positions, when counted from right (starting with 0 for the least significant position): 0, 2 and 3. Thus a(35) = 2^0 + 2^2 + 2^3 = 1*4*8 = 13.
Links
Crossrefs
Programs
-
Mathematica
nn = 120; m = 1; While[Factorial@ m < nn, m++]; m; Map[FromDigits[#, 2] &[IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] /. k_ /; k != 1 -> 0] &, Range[0, nn]] (* Michael De Vlieger, Aug 11 2016, Version 10.2 *)
Formula
If A257261(n) = 0, then a(n) = 0, otherwise a(n) = A000079(A257261(n)-1) + a(A275730(n, A257261(n)-1)). [Here A275730(n,p) is a bivariate function that "clears" the digit at zero-based position p in the factorial base representation of n].
Other identities and observations. For all n >= 0:
a(A059590(n)) = n.
a(A255411(n)) = 0.
Comments