cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275750 Prime numbers of the form 4^k - 27.

Original entry on oeis.org

37, 229, 997, 1048549, 4194277, 67108837, 1125899906842597, 72057594037927909, 288230376151711717, 1361129467683753853853498429727072845797, 1393796574908163946345982392040522594123749, 1725436586697640946858688965569256363112777243042596638790631055949797
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 07 2016

Keywords

Comments

Values of the exponent k are given in A274519. If the exponent is odd, then the rightmost digit of a(n) will be 7. If the exponent is even, then the rightmost digit of a(n) will be 9.
As a result of the recent extensions to A274519 by Vincenzo Librandi,
a(13) = 4^305 - 27 > 4.2491 * 10^183
a(14) = 4^515 - 27 > 1.1505 * 10^310
a(15) = 4^2029 - 27 > 3.7994 * 10^1221
a(16) = 4^2393 - 27 > 5.3648 * 10^1440
a(17) = 4^2605 - 27 > 2.3242 * 10^1568
a(18) = 4^3530 - 27 > 1.8696 * 10^2125
a(19) = 4^4036 - 27 > 8.2058 * 10^2429
a(20) = 4^4750 - 27 > 6.0947 * 10^2859
a(21) > 4^5000 - 27 > 1.9950 * 10^3010.
These primes a(m) can be used to generate numbers having abundance 26. The formula a(m)*(a(m)+27)/2 produces some of the terms in A275701.

Examples

			a(1) = 4^A274519(1) - 27 = 4^3  - 27 =       64 - 27 =       37.
a(2) = 4^A274519(2) - 27 = 4^4  - 27 =      256 - 27 =      229.
a(3) = 4^A274519(3) - 27 = 4^5  - 27 =     1024 - 27 =      997.
a(4) = 4^A274519(4) - 27 = 4^10 - 27 =  1048576 - 27 =  1048549.
a(5) = 4^A274519(5) - 27 = 4^11 - 27 =  4194304 - 27 =  4194277.
a(6) = 4^A274519(6) - 27 = 4^13 - 27 = 67108864 - 27 = 67108837.
		

Crossrefs

Programs

Formula

a(n) = 4^A274519(n) - 27.