A275751 Self-convolution square root of the even bisection of A274965.
1, 1, 4, 19, 92, 446, 2150, 10280, 48761, 229558, 1073278, 4986624, 23037102, 105877968, 484337300, 2206188412, 10010589904, 45264063504, 204016241794, 916898737038, 4109984712933, 18379240912034, 82012499946246, 365245641944278, 1623757696702586, 7207073607368924, 31941896126213722, 141377838141158888, 624983649220555836, 2759711619634526196, 12173102200970091434
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 92*x^4 + 446*x^5 + 2150*x^6 + 10280*x^7 + 48761*x^8 + 229558*x^9 + 1073278*x^10 + 4986624*x^11 + 23037102*x^12 +... where A(x)^2 = 1 + 2*x + 9*x^2 + 46*x^3 + 238*x^4 + 1228*x^5 + 6289*x^6 + 31924*x^7 + 160694*x^8 + 802642*x^9 + 3980916*x^10 +...+ A274965(2*n)*x^n +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1024
Programs
-
PARI
{a(n) = my(A,B=1); for(k=0, 2*n, B = B^2 + x^(2*n+1-k) +O(x^(2*n+1))); A = sqrt( (B + subst(B,x,-x))/2 ); polcoeff(A, 2*n)} for(n=0, 30, print1(a(n), ", "))
Comments