cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275752 Self-convolution square root of the odd bisection of A274965.

Original entry on oeis.org

1, 2, 8, 36, 166, 770, 3574, 16560, 76516, 352498, 1619014, 7414134, 33855996, 154181234, 700333366, 3173299648, 14345094004, 64704125888, 291235313046, 1308229210186, 5865335253474, 26248821086374, 117265700856282, 523010482541564, 2328947839518852, 10354971182171076, 45973304229373220, 203824525466826232, 902455230607927616, 3990584636812405052, 17624255201680536016
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2016

Keywords

Comments

The g.f. of A274965 equals G(x,1), where G(x,y) = x*y + G(x,x*y)^2 is the g.f. of A275670.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 166*x^4 + 770*x^5 + 3574*x^6 + 16560*x^7 + 76516*x^8 + 352498*x^9 + 1619014*x^10 + 7414134*x^11 + 33855996*x^12 +...
where
A(x)^2 = 1 + 4*x + 20*x^2 + 104*x^3 + 540*x^4 + 2780*x^5 + 14180*x^6 + 71688*x^7 + 359452*x^8 + 1788988*x^9 + 8844064*x^10 +...+ A274965(2*n+1)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,B=1); for(k=0, 2*n, B = B^2 + x^(2*n+1-k) +O(x^(2*n+2))); A = sqrt( (B - subst(B,x,-x))/(2*x) ); polcoeff(A, 2*n)}
    for(n=0, 30, print1(a(n), ", "))