cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274377 E.g.f. satisfies: A(x)^A(x) = exp(2*x) * A(-x)^A(-x).

Original entry on oeis.org

1, 1, 0, 1, 0, 16, 0, 736, 0, 67096, 0, 10163176, 0, 2306198896, 0, 732199108096, 0, 309860700130816, 0, 168568765338224896, 0, 114619705107961862656, 0, 95251358122177791486976, 0, 94984793274454431691503616, 0, 111939507886837612683516276736, 0, 153907136552991217284274400567296, 0, 244164979570216285201628515234840576, 0, 442692827509235885935744380253757341696, 0, 909667081143908558901949811564629988048896
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2016

Keywords

Comments

a(2*n+1) = 6 (mod 10) for n>1 (conjecture).

Examples

			E.g.f.: A(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...
such that A(x)^A(x) / A(-x)^A(-x) = exp(2*x).
RELATED SERIES.
A(x)^A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...+ A275764(n)*x^n/n! +...
Series_Reversion(A(x) - 1) = x - x^3/6 - x^5/20 - x^7/42 - x^9/72 - x^11/110 - x^13/156 - x^15/210 - x^17/272 +...+ -x^(2*n+1)/(2*n*(2*n+1)) +...
Also,
Series_Reversion(A(x) - 1) = (G(x) - G(-x))/2, where G(x) = (1+x)*log(1+x) = Series_Reversion(x/LambertW(x) - 1), and begins:
G(x) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 - x^11/110 + x^12/132 +...+ (-x)^n/(n*(n-1)) +...
GENERATING METHOD.
Start with a(0)=1, a(1)=1, and set a(2*n)=0 for n>0, then use the following criterion to determine the odd-indexed terms.
Given partial sum A(x,2*n) = Sum_{k=0..2*n} a(k)*x^k/k!, and sufficiently large N, the odd-indexed term a(2*n+1) satisfies:
if t > a(2*n+1)/(2*n+1)!, then
t > [x^(2*n+1)] ( A(x,2*n) +  t*x^(2*n+1) )^(1-1/N)
else if t <= a(2*n+1)/(2*n+1)! , then
t < [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N);
this criterion defines each term of this sequence for n>1.
Using the same method as above, but without setting even-indexed terms to zero, generates x/LambertW(x), e.g.f. of A177885.
RELATED SERIES.
log(A(x)) = x - x^2/2! + 3*x^3/3! - 10*x^4/4! + 60*x^5/5! - 346*x^6/6! + 3108*x^7/7! - 25600*x^8/8! + 306120*x^9/9! - 3283696*x^10/10! + 49021368*x^11/11! - 648526000*x^12/12! + 11606584080*x^13/13! - 182697457216*x^14/14! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = 1 + serreverse(x - sum(m=1,n\2+1, x^(2*m+1)/(2*m*(2*m+1)) ) +x^2*O(x^n) ) ); n!*polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    /* Generating method (using sufficiently large N and precision) */
    \p100
    {a(n) = my(N=10^(3*n), A=[1,1]); for(i=0,n\2, A=concat(A,[0,0]); A[#A] = round( (#A-1)!*polcoeff( N*1.* Ser(A)^(1-1/N), #A-1) )/(#A-1)! ); n!*A[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

E.g.f.: 1 + Series_Reversion( log( sqrt( (1+x)^(1+x) / (1-x)^(1-x) ) ) ).
E.g.f.: 1 + Series_Reversion( (G(x) - G(-x))/2 ), where G(x) = Series_Reversion(x/LambertW(x) - 1) = (1+x)*log(1+x).
E.g.f.: 1 + Series_Reversion( x - Sum_{n>=1} x^(2*n+1)/(2*n*(2*n+1)) ).
If n is odd then a(n) ~ c * d^n * n^(n-1) / exp(n), where d = 1.37441749603820461..., c = 0.6508250221842049... . - Vaclav Kotesovec, Sep 22 2016
Showing 1-1 of 1 results.