cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275765 G.f. satisfies: A(x - A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 2, 12, 106, 1148, 14156, 191400, 2775930, 42585412, 684496988, 11449962008, 198331811356, 3543990791480, 65136985937096, 1228531761076208, 23733123786608826, 468887742020767788, 9461919438245032500, 194817077269127033944, 4089069139317823277548, 87426000975842460304792, 1902787414323673070857528, 42133267254272433484761584, 948695717599714654940068604, 21712101305047777916075831096, 504865916349551192319293625016
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 12*x^3 + 106*x^4 + 1148*x^5 + 14156*x^6 + 191400*x^7 + 2775930*x^8 + 42585412*x^9 + 684496988*x^10 + 11449962008*x^11 + 198331811356*x^12 +...
such that A(x - A(x)^2) = x + A(x)^2.
RELATED SERIES.
Series_Reversion(x - A(x)^2) = x + x^2 + 6*x^3 + 53*x^4 + 574*x^5 + 7078*x^6 + 95700*x^7 + 1387965*x^8 + 21292706*x^9 + 342248494*x^10 +...
which equals (A(x) + x)/2.
A( (A(x) + x)/2 ) = x + 3*x^2 + 22*x^3 + 221*x^4 + 2634*x^5 + 35086*x^6 + 506356*x^7 + 7773279*x^8 + 125441594*x^9 + 2110832382*x^10 +...
which equals sqrt( (A(x) - x)/2 ).
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 2*x^2 - 4*x^3 - 26*x^4 - 228*x^5 - 2396*x^6 - 28440*x^7 - 369114*x^8 - 5135468*x^9 - 75602108*x^10 - 1167066216*x^11 - 18768202924*x^12 +...
then Series_Reversion(x + A(x)^2) = x/2 + R(x)/2.
		

Crossrefs

Programs

  • Mathematica
    m = 26; A[_] = 0;
    Do[A[x_] = x + 2 A[x/2 + A[x]/2]^2 + O[x]^(m+1) // Normal, {m+1}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1], F=x); for(i=1,n, A=concat(A,0); F=x*Ser(A); A[#A] = -polcoeff(subst(F,x,x-F^2) - F^2,#A) );A[n]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 2 * A( x/2 + A(x)/2 )^2.
(2) A(x) = -x + 2 * Series_Reversion(x - A(x)^2).
(3) R(x) = -x + 2 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*2^(n-k).