A285905 a(n) = A275768(A002110(n)).
0, 0, 5, 26, 124, 852, 7550, 86125, 1250924, 23748764
Offset: 1
Examples
a(3) = 5 since there are 5 ways to express A002110(3) = 30 as (prime(i) + prime(j))/2 with (prime(i) - prime(j))/2 also prime: (53 + 7)/2 = 30, (53 - 7)/2 = 46/2 = 23 (47 + 13)/2 = 30, (47 - 13)/2 = 34/2 = 17 (43 + 17)/2 = 30, (43 - 17)/2 = 26/2 = 13 (41 + 19)/2 = 30, (41 - 19)/2 = 22/2 = 11 (37 + 23)/2 = 30, (37 - 23)/2 = 14/2 = 7.
Links
Programs
-
Mathematica
With[{j = 10^3}, Do[Module[{P = Times @@ Prime@ Range@ n, m}, m = PrimePi@ P; Print@ Total@ Reap[Do[Sow@ Count[Map[{2 P - #, #} &, Prime@ Range[Max[n, k], Min[k + j - 1, m]]], w_ /; And[PrimeQ@ First@ w, PrimeQ[(Subtract @@ w)/2]]], {k, 1, m, j}]][[-1, 1]]], {n, 9}]] (* or *) Table[Function[P, Count[Map[{2 P - #, #} &, #], w_ /; And[PrimeQ@ First@ w, PrimeQ[(Subtract @@ w)/2]]] &@ Flatten@ Select[Prime@ Range[n + 1, PrimePi[P]], Times @@ Boole@ Map[PrimeQ, {#, P - #}] == 1 &]]@ Product[Prime@ i, {i, n}], {n, 9}] (* Michael De Vlieger, May 03 2017 *) countOfPrimes = 0 countOfPrimes2 = 0 countOfPrimes3 = 0 Pn10 = 2*3*5*7*11*13*17*19*23*29 PnToUse = Pn10 distanceToCheck = PnToUse For[i=0,i
Jamie Morken, May 05 2017 *)
Comments