A275784 Number A(n,k) of up-down sequences with k copies each of 1,2,...,n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 5, 1, 1, 0, 1, 12, 53, 16, 1, 1, 0, 1, 36, 761, 936, 61, 1, 1, 0, 1, 120, 12661, 87336, 25325, 272, 1, 1, 0, 1, 400, 229705, 9929000, 18528505, 933980, 1385, 1, 1, 0, 1, 1400, 4410665, 1267945800, 17504311533, 6376563600, 45504649, 7936, 1
Offset: 0
Examples
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412. A(3,2) = 4: 121323, 132312, 231213, 231312. A(3,3) = 12: 121313232, 121323132, 121323231, 131213232, 132312132, 132323121, 231213132, 231213231, 231312132, 231323121, 232312131, 232313121. A(2,4) = 1: 12121212. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 12, 36, 120, ... 1, 5, 53, 761, 12661, 229705, ... 1, 16, 936, 87336, 9929000, 1267945800, ... 1, 61, 25325, 18528505, 17504311533, 19126165462061, ... 1, 272, 933980, 6376563600, 59163289699260, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..15, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(l=[], 1, `if`(irem(add(i, i=l), 2)=0, add(b(i, subsop(i=`if`(l[i]=1, [][], l[i]-1), l)), i=n+1..nops(l)), add(b(i-`if`(l[i]=1, 1, 0), subsop( i=`if`(l[i]=1, [][], l[i]-1), l)), i=1..n-1))) end: A:= (n, k)->`if`(k=0, 1, b(`if`(irem(k*n, 2)=0, 0, n+1), [k$n])): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[n_, l_List] := b[n, l] = If[l == {}, 1, If[EvenQ[Total[l]], Sum[b[i, ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, n+1, Length[l]}], Sum[b[i - If[l[[i]] == 1, 1, 0], ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, 1, n-1}]]]; A[n_, k_] := If[k == 0, 1, b[If[EvenQ[k*n], 0, n+1], Array[k&, n]]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)