A275791 Triangle T(n, m) appearing in the expansion of Jacobi's elliptic function cn(u, k) divided by cos(v) in terms of the Jacobi nome q and even powers of 2*cos(v) with v = u/((2/Pi)*K(k)).
1, -4, 1, 4, -5, 1, 0, 12, -7, 1, 4, -21, 25, -9, 1, -8, 30, -63, 42, -11, 1, 0, -44, 131, -138, 63, -13, 1, 0, 72, -246, 365, -253, 88, -15, 1, 4, -85, 425, -837, 808, -416, 117, -17, 1, -4, 85, -685, 1734, -2200, 1552, -635, 150, -19, 1, 8, -134, 1053, -3319, 5326, -4888, 2705, -918, 187, -21, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 0: 1 1: -4 1 2: 4 -5 1 3: 0 12 -7 1 4: 4 -21 25 -9 1 5: -8 30 -63 42 -11 1 6: 0 -44 131 -138 63 -13 1 7: 0 72 -246 365 -253 88 -15 1 8: 4 -85 425 -837 808 -416 117 -17 1 9: -4 85 -685 1734 -2200 1552 -635 150 -19 1 ... Row n=10: 8 -134 1053 -3319 5326 -4888 2705 -918 187 -21 1. ... n=4: q^4 term of cn(u, k)/cos(v) is 4 - 21*(2*cos(v))^2 + 25*(2*cos(v))^4 - 9*(2*cos(v))^6 + (2*cos(v))^8. One can check the identity for cn(u, k), for example for u = 1 and k = sqrt(1/2), belonging to v = 0.8472130848 and q = 0.04321391815 (Maple 10 digits), with the result from Maple's cn function cn(1, sqrt(1/2)) = 0.5959765676 (10 digits). If one takes the expansion up to q^4 inclusive one obtains 0.5959776092 (10 digits). If one goes up to q^6 inclusive one gets 0.5959765640 (10 digits).
References
- F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948.
Links
- Wolfdieter Lang, Expansions for phase space coordinates for the plane pendulum
Formula
cn(u, k) = cos(v)*Sum_{n >= 0} q^n*Sum_{m = 0..n} T(n, m)*(2*cos(v))^(2*m), becoming an identity if q, the Jacobi nome, is replaced by exp(-Pi*K'(k)/K(k)) and v by u/((2/Pi)*K(k)) with the real and imaginary quarter periods K' and K, respectively. For the expansions of q = q(k) see A005797 or better A002103 for q = q((1-k^2)^(1/4)), and for (2/Pi)*K(k) see A038534 / A056982.
Comments