cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A275725 a(n) = A275723(A002110(1+A084558(n)), n); prime factorization encodings of cycle-polynomials computed for finite permutations listed in the order that is used in tables A060117 / A060118.

Original entry on oeis.org

2, 4, 18, 8, 12, 8, 150, 100, 54, 16, 24, 16, 90, 40, 54, 16, 36, 16, 60, 40, 36, 16, 24, 16, 1470, 980, 882, 392, 588, 392, 750, 500, 162, 32, 48, 32, 270, 80, 162, 32, 108, 32, 120, 80, 72, 32, 48, 32, 1050, 700, 378, 112, 168, 112, 750, 500, 162, 32, 48, 32, 450, 200, 162, 32, 72, 32, 300, 200, 108, 32, 48, 32, 630, 280, 378, 112, 252, 112, 450, 200
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in tables A060117 or A060118. See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A060117:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(4) = 2^2 * 3^1 = 12]
  2,3,1 [One 3-cycle, thus a(5) = 2^3 = 8]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100]
and also the seventeenth one at n=16 [A007623(16)=220] where we have:
  3,4,1,2 [Two 2-cycles crossed, thus a(16) = 2^2 * 3^2 = 36].
		

Crossrefs

Cf. A275807 (terms divided by 2).
Cf. also A275733, A275734, A275735 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

Formula

a(n) = A275723(A002110(1+A084558(n)), n).
Other identities:
A001221(a(n)) = 1+A257510(n) (for all n >= 1).
A001222(a(n)) = 1+A084558(n).
A007814(a(n)) = A275832(n).
A048675(a(n)) = A275726(n).
A051903(a(n)) = A275803(n).
A056169(a(n)) = A275851(n).
A046660(a(n)) = A060130(n).
A072411(a(n)) = A060131(n).
A056170(a(n)) = A060128(n).
A275812(a(n)) = A060129(n).
a(n!) = 2 * A243054(n) = A000040(n)*A002110(n) for all n >= 1.

A261220 Ranks of involutions in permutation orderings A060117 and A060118.

Original entry on oeis.org

0, 1, 2, 4, 6, 7, 12, 16, 18, 20, 24, 25, 26, 28, 48, 49, 60, 66, 72, 76, 78, 90, 96, 98, 102, 108, 120, 121, 122, 124, 126, 127, 132, 136, 138, 140, 240, 241, 242, 244, 288, 289, 312, 316, 336, 338, 360, 361, 372, 378, 384, 385, 432, 450, 456, 468, 480, 484, 486, 498, 504, 508, 528, 546, 576, 582, 600, 602, 606, 612, 624, 626, 648, 660, 672, 678, 720, 721
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

From Antti Karttunen, Aug 17 2016: (Start)
Intersection of A275804 and A276005. In other words, these are numbers in whose factorial base representation (A007623, see A260743) there does not exist any such pair of nonzero digits d_i and d_j in positions i and j that either (i - d_i) = j or (i - d_i) = (j - d_j) would hold. Here one-based indexing is used so that the least significant digit at right is in position 1.
(End)

Crossrefs

Intersection of A275804 and A276005.
Same sequence shown in factorial base: A260743.
Positions of zeros in A261219.
Positions of 1 and 2's in A060131 and A275803.
Subsequence: A060112.
Cf. also A014489.

A278225 Filter-sequence for factorial base (cycles in A060117/A060118-permutations): Least number with the same prime signature as A275725.

Original entry on oeis.org

2, 4, 12, 8, 12, 8, 60, 36, 24, 16, 24, 16, 60, 24, 24, 16, 36, 16, 60, 24, 36, 16, 24, 16, 420, 180, 180, 72, 180, 72, 120, 72, 48, 32, 48, 32, 120, 48, 48, 32, 72, 32, 120, 48, 72, 32, 48, 32, 420, 180, 120, 48, 120, 48, 120, 72, 48, 32, 48, 32, 180, 72, 48, 32, 72, 32, 180, 72, 72, 32, 48, 32, 420, 120, 120, 48, 180, 48, 180, 72, 48, 32, 72, 32, 120, 48, 48
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain sequences related to cycle-structures in finite permutations as ordered by lists A060117 / A060118 (and thus also related to factorial base representation, A007623) because it matches only with any such sequence b that can be computed as b(n) = f(A275725(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278234, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A048764, A048765, A060129, A060130, A060131, A084558, A275803, A275851, A257510.

Programs

Formula

a(n) = A046523(A275725(n)).
Showing 1-3 of 3 results.