cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275806 a(n) = number of distinct nonzero digits in factorial base representation of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2016

Keywords

Examples

			For n=0, with factorial base representation (A007623) also 0, there are no nonzero digits, thus a(0) = 0.
For n=2, with factorial base representation "10", there is one distinct nonzero digit, thus a(2) = 1.
For n=3, with factorial base representation "11", there is just one distinct nonzero digit, thus a(3) = 1.
For n=44, with factorial base representation "1310", there are two distinct nonzero digits ("1" and "3"), thus a(44) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Length[Union[Select[s, # > 0 &]]]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Python
    from sympy import prime, primefactors
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n
  • Scheme
    (define (A275806 n) (A001221 (A275735 n)))
    

Formula

a(n) = A001221(A275735(n)).
a(n) = A060502(A225901(n)).
Other identities. For all n >= 0:
a(n) = a(A153880(n)) = a(A255411(n)). [The shift-operations do not change the number of distinct nonzero digits.]
a(A265349(n)) = A060130(A265349(n)).
a(A000142(n)) = 1.
a(A033312(n)) = n-1, for all n >= 1.