cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275817 Least positive integer s such that an integer square k^2 lies between s^2*n and s^2*(n+1), with s^2*n < k^2 < s^2*(n+1).

Original entry on oeis.org

2, 3, 2, 4, 5, 3, 2, 3, 6, 7, 4, 3, 2, 3, 4, 8, 9, 5, 3, 5, 2, 3, 4, 5, 10, 11, 6, 4, 3, 5, 2, 5, 3, 4, 6, 12, 13, 7, 5, 4, 3, 7, 2, 5, 3, 4, 5, 7, 14, 15, 8, 5, 4, 3, 5, 7, 2, 5, 3, 7, 4, 6, 8, 16, 17, 9, 6, 5, 4, 3, 5, 7, 2, 5, 8, 3, 4, 5, 6, 9, 18, 19, 10, 7, 5, 4, 7, 3
Offset: 0

Views

Author

Hugo Pfoertner, Aug 09 2016

Keywords

Comments

The corresponding values of k are provided in A275818.

Examples

			a(0)=2, because 2^2*0 < 1^2 < 2^2*(0+1).
		

Crossrefs

Programs

  • Mathematica
    Table[s = 1; While[Count[Range[n s^2 + 1, (n + 1) s^2 - 1], k_ /; IntegerQ@ Sqrt@ k] == 0, s++]; s, {n, 0, 120}] (* Michael De Vlieger, Aug 14 2016 *)

Formula

If n = k^2 - 1 and k > 0, then a(n) = 2*k, A183162(n) = 1; otherwise a(n) = A183162(n).