cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A275820 Expansion of Product_{k>=1} (1 + x^(2*k) + x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 3, 1, 3, 3, 3, 2, 7, 3, 8, 7, 10, 7, 16, 8, 17, 17, 21, 17, 35, 22, 37, 36, 46, 37, 69, 46, 74, 71, 91, 81, 128, 96, 144, 139, 173, 154, 236, 185, 263, 257, 314, 286, 417, 345, 470, 462, 557, 517, 719, 617, 815, 802, 960, 904, 1211, 1068
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(2*k)+x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[3]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + If[j < 2*k, 0, p[[j - 2*k + 1]]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-2*x) + exp(-3*x)) dx = 0.60248650631158778882474716370201988195290074160793967143564...

A276519 Expansion of Product_{k>=1} 1/(1 - x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 17, 19, 34, 37, 61, 75, 112, 138, 209, 256, 376, 478, 675, 866, 1222, 1566, 2175, 2830, 3873, 5055, 6900, 9011, 12213, 16045, 21599, 28429, 38191, 50290, 67341, 88884, 118669, 156751, 209018, 276200, 367734, 486376, 646688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[1/Product[1-x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * p / r^n, where r = A075778 = 1/A060006 = 0.7548776662466927600495... is the real root of the equation r^3 + r^2 - 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) - r^(3*n)) = 3.820450591662541853... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.

A276526 Expansion of Product_{k>=1} 1/(1 - x^(2*k) + x^(3*k)).

Original entry on oeis.org

1, 0, 1, -1, 2, -2, 3, -4, 7, -8, 11, -15, 22, -27, 37, -51, 70, -90, 121, -162, 220, -288, 381, -512, 688, -902, 1197, -1598, 2127, -2809, 3722, -4949, 6581, -8699, 11519, -15301, 20305, -26862, 35581, -47208, 62591, -82859, 109756, -145506, 192856, -255388
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1-x^(2*k)+x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * p / r^n, where r = -A075778 = -0.7548776662466927600495... is the real root of the equation r^3 - r^2 + 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) + r^(3*n)) = 1.9844809074648434... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.
Showing 1-3 of 3 results.