A275856 a(n) = floor(c*s*a(n-1)) + floor(d*r*a(n-2)), where r = (1+sqrt(5))/2, s = r/(r-1), c = 1, d = 1, a(0) = 1, a(1) = 1.
1, 1, 3, 8, 24, 74, 231, 723, 2265, 7098, 22246, 69724, 218533, 684941, 2146791, 6728628, 21089356, 66099798, 207174811, 649342415, 2035216397, 6378923798, 19993288618, 62664424664, 196407414185, 615594454969, 1929441078187, 6047395073408, 18954187089376
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,1,0,-1).
Programs
-
Mathematica
c = 1; d = 1; z = 40; r = (c + Sqrt[c^2 + 4 d])/2; s = r/(r - 1); a[0] = 1; a[1] = 1; a[n_] := a[n] = Floor[c*s*a[n - 1]] + Floor[d*r*a[n - 2]]; t = Table[a[n], {n, 0, z}] LinearRecurrence[{4,-3,1,0,-1},{1,1,3,8,24},40] (* Harvey P. Dale, Mar 21 2025 *)
Formula
a(n) = floor(s*a(n-1)) + floor(r*a(n-2)), where r = (1+sqrt(5))/2, s = r/(r-1).
G.f.: (1 - 3 x + 2 x^2 - 2 x^3)/(1 - 4 x + 3 x^2 - x^3 + x^5).