A275938 Numbers m such that d(m) is prime while sigma(m) is not prime (where d(m) = A000005(m) and sigma(m) = A000203(m)).
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1
Examples
49 is a term because A000005(49) = 3 is prime while sigma(49) = 57 is not.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= select(isprime, {2,seq(p,p=3..N,2)}): fp:= proc(p) local q,res; q:= 2; res:= NULL; while p^(q-1) <= N do if not isprime((p^q-1)/(p-1)) then res:= res, p^(q-1) fi; q:= nextprime(q); od; res; end proc: sort(convert(map(fp, P),list)); # Robert Israel, Aug 12 2016
-
PARI
lista(nn) = for(n=1, nn, if(isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")));
Comments