A275946 Number of nonzero digits that are the sole occupants of their slope in factorial base representation: a(n) = A056169(A275734(n)). (See comments for more exact definition.)
0, 1, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 2, 0, 1, 2, 1, 1, 0, 2, 1, 0, 0, 1, 2, 2, 3, 2, 1, 2, 3, 3, 4, 3, 2, 2, 3, 1, 2, 3, 2, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 1, 0, 1, 1, 2, 1, 0, 2, 3, 1, 2, 3, 2, 2, 1, 3, 2, 1, 1, 1, 2, 0, 1, 2, 1, 2, 3, 1, 2, 3, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 2, 1, 3, 2, 1, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
Offset: 0
Examples
For n=2, in factorial base "10", there is only one slope occupied by a single nonzero digit (1 is on the sub-maximal slope as 2-1 = 1), thus a(2) = 1. For n=3, in factorial base "11", there are two occupied slopes, each having just one digit present, thus a(3) = 2. For n=5, in factorial base "21", there is just one distinct occupied slope, but it contains two nonzero digits (2 and 1 both occupy the maximal slope as 2-2 = 1-1 = 0), thus there are no slopes with just one nonzero digit and a(5) = 0. For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). Thus only one of the slopes is occupied by a lonely occupant and a(525) = 1.
Comments