cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275947 Number of distinct slopes with multiple nonzero digits in factorial base representation of n: a(n) = A056170(A275734(n)). (See comments for more exact definition).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 15 2016

Keywords

Comments

a(n) gives the number of distinct elements that have multiplicity > 1 in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present and i_x is its position from the right].

Examples

			For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). Thus there are two slopes with more than one nonzero digit, and a(525) = 2.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the distinct elements that occur multiple times are 0 and 1, thus a(525) = 2.
		

Crossrefs

Cf. A275804 (indices of zeros), A275805 (of nonzeros).

Programs

Formula

a(n) = A056170(A275734(n)).
Other identities and observations. For all n >= 0.
a(n) = A275949(A225901(n)).
A060502(n) = A275946(n) + a(n).
a(n) <= A275962(n).