cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A275955 Leftmost column of array A275950.

Original entry on oeis.org

1, 2, 6, 24, 150, 918, 6876, 63018, 589518, 6272712, 76110150, 950826294, 13044895668, 197045295354, 3070861314894, 51493780503216, 931608094164870, 17371288788509142, 344019296960858844, 7251768315234745722, 157314435990604845822, 3591397708609454572248, 86444118766100900895390
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2016

Keywords

Comments

Inverse binomial transform of A265905 (when both are considered as offset-0 sequences).

Crossrefs

Cf. also A275965.

Programs

A275951 Transpose of array A275950.

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 150, 174, 204, 242, 291, 918, 1068, 1242, 1446, 1688, 1979, 6876, 7794, 8862, 10104, 11550, 13238, 15217, 63018, 69894, 77688, 86550, 96654, 108204, 121442, 136659, 589518, 652536, 722430, 800118, 886668, 983322, 1091526, 1212968, 1349627, 6272712, 6862230, 7514766, 8237196, 9037314, 9923982, 10907304, 11998830, 13211798, 14561425
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2016

Keywords

Comments

See A275950.

Crossrefs

Transpose: A275950.

Programs

A275960 Square array A(1,k) = A265907(k), A(n>1,k) = A(n-1, k+1) - A(n-1, k); successive differences of A265907 read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 5, 4, 27, 22, 18, 283, 256, 234, 216, 2783, 2500, 2244, 2010, 1794, 27381, 24598, 22098, 19854, 17844, 16050, 289573, 262192, 237594, 215496, 195642, 177798, 161748, 3294929, 3005356, 2743164, 2505570, 2290074, 2094432, 1916634, 1754886, 39857103, 36562174, 33556818, 30813654, 28308084, 26018010, 23923578, 22006944, 20252058
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2016

Keywords

Examples

			The top left corner of the array:
       1, 5, 27, 283, 2783, 27381, 289573
       4, 22, 256, 2500, 24598, 262192, 3005356
      18, 234, 2244, 22098, 237594, 2743164, 33556818
     216, 2010, 19854, 215496, 2505570, 30813654, 408368976
    1794, 17844, 195642, 2290074, 28308084, 377555322, 11598750594
   16050, 177798, 2094432, 26018010, 349247238, 11221195272, 231648340170
  161748, 1916634, 23923578, 323229228, 10871948034, 220427144898, ...
		

Crossrefs

Transpose: A275961.
Row 1: A265907, row 2: A265908, row 3: A275963.
Column 1: A275965.
Cf. A255411.
Variant: A275950.

Programs

Formula

A(1,k) = A265907(k); and for n > 1, A(n,k) = A(n-1, k+1) - A(n-1, k).

A265905 a(1) = 1; for n > 1, a(n) = a(n-1) + A153880(a(n-1)).

Original entry on oeis.org

1, 3, 11, 49, 291, 1979, 15217, 136659, 1349627, 14561425, 174637707, 2254758155, 31206959833, 467925825795, 7453435202483, 125743951819681, 2262941842058883, 42863071603162571, 852618666050008129, 17902734514975521891, 392964858422866610699, 9001537965557375522737, 216015564123360144707139, 5390978540058458090266187
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2015

Keywords

Comments

In factorial base (A007623) these numbers look as:
1, 11, 121, 2001, 22011, 242121, 3004001, 33044011, 363524121, 4011111001, 44122221011, 485344431121, 5018801043001, , ...
This sequence is obtained by setting a(1) = 1, and then adding to each previous term a(n-1) the same factorial-base representation, but shifted by one factorial digit left. Only when a term does not contain any adjacent nonzero digits, as is the case with a(4) = "2001" or a(7) = "3004001", does the next term a(5) = "22011" (or respectively a(8) = "33044011") show the uncorrupted "double vision pattern". In other cases, for example, when going from a(2) to a(3), "11" to "121", two nonzero digits are summed up and there is possibly also a carry digit propagating to the left.
Note that the sequence is computed in such a way that factorial-base digits larger than 9 are also correctly summed together. That is, the eventual decimal corruption present in sequences like A007623 does not affect the actual values of this sequence. (See the implementation of A153880.)

Crossrefs

Row 1 of A275950.
Binomial transform of A275955 (when both are considered as offset-0 sequences).
Cf. A084558 (left inverse), A153880.
Cf. A001710, A265906 (first differences), A265907 (variant).

Programs

  • Mathematica
    f[n_] := Module[{k = n, m = 2, r, s = {0}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, AppendTo[s, r]; m++]; FromDigits[Reverse[s], MixedRadix[Reverse@ Range[2, Length[s] + 1]]]]; NestList[f[#] + # &, 1, 23] (* Amiram Eldar, Feb 14 2024 *)

Formula

a(1) = 1; for n > 1, a(n) = a(n-1) + A153880(a(n-1)).
Other identities. For all n >= 1:
A084558(a(n)) = n. [The length of the factorial-base representation of the n-th term is always n.]

Extensions

Comment and the note about binomial transform corrected - Antti Karttunen, Sep 20 2016

A265906 a(n) = A153880(A265905(n)); also the first differences of A265905.

Original entry on oeis.org

2, 8, 38, 242, 1688, 13238, 121442, 1212968, 13211798, 160076282, 2080120448, 28952201678, 436718865962, 6985509376688, 118290516617198, 2137197890239202, 40600129761103688, 809755594446845558, 17050115848925513762, 375062123907891088808, 8608573107134508912038, 207014026157802769184402, 5174962975935097945559048
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2015

Keywords

Comments

In factorial base (A007623) these numbers are just like those in A265905, but shifted once left, with an extra zero appended:
10, 110, 1210, 20010, 220110, 2421210, 30040010, 330440110, 3635241210, 40111110010, 441222210110, 4853444311210, 50188010430010, , ...

Crossrefs

Row 2 of A275950.
First differences of A265905.

Formula

a(n) = A153880(A265905(n)).
a(n) = A265905(n+1) - A265905(n).

A275953 First differences of A265906; second differences of A265905.

Original entry on oeis.org

6, 30, 204, 1446, 11550, 108204, 1091526, 11998830, 146864484, 1920044166, 26872081230, 407766664284, 6548790510726, 111305007240510, 2018907373622004, 38462931870864486, 769155464685741870, 16240360254478668204, 358012008058965575046, 8233510983226617823230, 198405453050668260272364, 4967948949777295176374646, 129158062469199137001844830
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2016

Keywords

Crossrefs

Row 3 of A275950.

Programs

Formula

a(n) = A265906(1+n) - A265906(n).
Showing 1-6 of 6 results.