A275969 Least k such that phi(k) has exactly n prime factors (counted with multiplicity).
3, 5, 13, 17, 51, 85, 193, 257, 769, 1285, 3281, 4369, 12289, 21845, 49601, 65537, 196611, 327685, 786433, 1114129, 3158273, 5570645, 12648641, 16843009, 50397953, 84215045, 202113281, 286331153, 805384193, 1431655765, 3221225473, 8168859365, 12952273921
Offset: 1
Keywords
Examples
a(2) = 5 because phi(5) = 4 has 2 prime factors (counted with multiplicity).
Programs
-
Mathematica
Table[k = 1; While[PrimeOmega@ EulerPhi@ k != n, k++]; k, {n, 16}] (* Michael De Vlieger, Aug 15 2016 *)
-
PARI
a(n) = {my(k = 1); while(bigomega(eulerphi(k)) != n, k++); k; }
-
Perl
use ntheory ":all"; sub a275969 { my($k,$n)=(1,shift); $k++ while scalar(factor(euler_phi($k))) != $n; $k; } # Dana Jacobsen, Aug 16 2016
-
Perl
use v5.16; use ntheory ":all"; my($s,$chunk,$lp,@done) = (1,2e6,0); while (1) { my @npf = map { scalar(factor($_)) } euler_phi($s, $s+$chunk-1); if (vecany { $_>$lp } @npf) { while (my($idx,$val) = each @npf) { $done[$val] //= $s+$idx if $val > $lp; } while ($done[$lp+1]) { $lp++; say "$lp $done[$lp]"; } } $s += $chunk; } # Dana Jacobsen, Aug 16 2016
Extensions
a(26)-a(33) from Dana Jacobsen, Aug 16 2016
Comments