A276014 Diagonal of (1 - 9 x y) / ((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y) * (1 - u - v - z - w)).
1, 72, 45360, 46569600, 59594535000, 86482063571904, 136141986298526208, 226888189910421811200, 394399917777684601926000, 708188604075430924446000000, 1304782547573305224852017990400, 2454776409299366206456800694732800, 4699106882676505497505898579906736000, 9127695522416954472516114289988092800000
Offset: 0
Keywords
Examples
1 + 72*x + 45360*x^2 + 46569600*x^3 + ...
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..33
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (37).
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
Programs
-
Maple
diag_coeff := proc(expr, n) local var := [seq(indets(expr))], nvar := numelems(var); coeftayl(expr, var=[seq(0, i=1..nvar)], [seq(n, i=1..nvar)]); end proc: expr := (1-9*x*y)/((1-3*y-2*x + 3*y^2 + 9*x^2*y) * (1-u-v-z-w)): [seq(diag_coeff(expr, i), i=0..14)];
-
Mathematica
f = (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y)*(1 - u - v - z - w)); a[n_] := Fold[SeriesCoefficient[#1, {#2, 0, n}] &, f, {x, y, z, u, v, w}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 03 2017 *) Join[{1}, Table[FullSimplify[(4 * 9^n * Gamma[4*n] * Gamma[1/3 + n]) / (Gamma[1/3] * Gamma[n] * Gamma[1 + n]^4)], {n, 1, 20}]] (* Vaclav Kotesovec, Dec 03 2017 *)
Formula
a(n) = [(xyzuvw)^n] (1-9*x*y)/((1-3*y-2*x + 3*y^2 + 9*x^2*y) * (1-u-v-z-w)).
From Vaclav Kotesovec, Dec 03 2017: (Start)
Recurrence: n^4*a(n) = 24*(2*n - 1)*(3*n - 2)*(4*n - 3)*(4*n - 1)*a(n-1).
For n > 0, a(n) = 4 * 9^n * Gamma(4*n) * Gamma(n + 1/3) / (Gamma(1/3) * Gamma(n) * Gamma(n+1)^4).
a(n) ~ 2^(8*n - 1/2) * 3^(2*n) / (Pi^(3/2) * Gamma(1/3) * n^(13/6)). (End)
Comments