A276017 Diagonal of (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 8 x^2 y) * (1 - u - v - w)).
1, 18, 2160, 423360, 99792000, 25499650176, 6797581959168, 1860535606026240, 518890571236477440, 146835076503772800000, 42046646730013562757120, 12160617341681775057960960, 3547136319516173918512742400, 1042325945372157283978798694400, 308269259704090665806809006080000
Offset: 0
Keywords
Examples
1 + 18*x + 2160*x^2 + 423360*x^3 + ...
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..33
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (C.3).
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
Programs
-
Maple
diag_coeff := proc(expr, n) local var := [seq(indets(expr))], nvar := numelems(var); coeftayl(expr, var=[seq(0, i=1..nvar)], [seq(n, i=1..nvar)]); end proc: pxy := (1 - 3*y - 2*x + 3*y^2 + 8*x^2*y): expr := (1 - 9*x*y)/(pxy * (1 - u - v - w)): [seq(diag_coeff(expr, i), i=0..14)];
-
Mathematica
f = (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 8 x^2 y)*(1 - u - v - w)); a[n_] := Fold[SeriesCoefficient[#1, {#2, 0, n}]&, f, {x, y, u, v, w}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 03 2017 *)
Formula
a(n) = [(xyuvw)^n] (1 - 9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 8*x^2*y) * (1 - u - v - w)).
From Vaclav Kotesovec, Dec 03 2017: (Start)
Recurrence: (n-1)^2*n^3*(3*n - 5)*a(n) = 18*(n-1)^2*(3*n - 4)*(3*n - 2)^2*(3*n - 1)*a(n-1) - 216*(3*n - 5)^2*(3*n - 4)*(3*n - 2)^2*(3*n - 1)*a(n-2).
a(n) ~ Gamma(1/3) * 2^(2*n - 10/3) * 3^(4*n + 1) / (Pi^2 * n^(4/3)). (End)
Comments