cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276018 n^2 * a(n) = 3*(3*n-2)^2 * a(n-1), with a(0) = 1.

Original entry on oeis.org

1, 3, 36, 588, 11025, 223587, 4769856, 105423552, 2391796836, 55365667500, 1302200499600, 31026810250800, 747229013540100, 18158991471060300, 444709995209640000, 10963583748568324800, 271862615765280179025, 6775869970094509098675, 169647707399403264840900, 4264689597367270438867500
Offset: 0

Views

Author

Gheorghe Coserea, Aug 22 2016

Keywords

Examples

			A(x) = 1 + 3*x + 36*x^2 + 588*x^3 + ... is the g.f.
		

Crossrefs

Cf. A091401.

Programs

  • Mathematica
    Table[FullSimplify[3^(3*n) * Gamma[n + 1/3]^2 / (Gamma[1/3]^2 * Gamma[n+1]^2)], {n, 0, 20}] (* Vaclav Kotesovec, Aug 25 2016 *)
  • PARI
    seq(N) = {
      a = vector(N); a[1] = 3;
      for (n = 2, N, a[n] = 3*(3*n-2)^2/n^2 * a[n-1]);
      concat(1, a);
    };
    seq(20)

Formula

n^2 * a(n) = 3*(3*n-2)^2 * a(n-1), with a(0) = 1.
0 = 9*x*(x+27)*y'' + (15*x+243)*y' + y, where y(x) = A(x/-729).
From Vaclav Kotesovec, Aug 25 2016: (Start)
a(n) = 3^(3*n) * Gamma(n+1/3)^2 / (Gamma(1/3)^2 * Gamma(n+1)^2).
a(n) ~ 3^(3*n) / (Gamma(1/3)^2 * n^(4/3)). (End)
G.f.: 2F1(1/3,1/3;1;27*x). - Benedict W. J. Irwin, Oct 05 2016