A276066 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having a total of k double rises and double falls (n>=2,k>=0). A double rise (fall) in a bargraph is any pair of adjacent up (down) steps.
1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 4, 1, 4, 1, 0, 1, 4, 6, 8, 8, 1, 6, 1, 0, 1, 7, 14, 22, 12, 19, 12, 1, 8, 1, 0, 1, 13, 34, 43, 48, 55, 18, 35, 16, 1, 10, 1, 0, 1, 26, 72, 105, 148, 109, 116, 103, 24, 56, 20, 1, 12, 1, 0, 1, 52, 154, 276, 344, 347, 398, 205, 232, 166, 30, 82, 24, 1, 14, 1, 0, 1
Offset: 2
Examples
Row 4 is 1,2,1,0,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have a total of 0, 1, 1, 2, 4 double rises and double falls, respectively. Triangle starts: 1; 1,0,1; 1,2,1,0,1; 2,4,1,4,1,0,1; 4,6,8,8,1,6,1,0,1.
Links
- Alois P. Heinz, Rows n = 2..140, flattened
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
Programs
-
Maple
eq := z*G^2-(1-z-t^2*z-2*t*z^2+t^2*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. 2*n-4) end do; # yields sequence in triangular form. # second Maple program: b:= proc(n, y, t) option remember; expand(`if`(n=0, (1-t)* z^(y-1), `if`(t<0, 0, b(n-1, y+1, 1)*`if`(t=1, z, 1))+ `if`(t>0 or y<2, 0, b(n, y-1, -1)*`if`(t=-1, z, 1))+ `if`(y<1, 0, b(n-1, y, 0)))) end: T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=2..12); # Alois P. Heinz, Aug 25 2016
-
Mathematica
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, (1 - t)*z^(y - 1), If[t < 0, 0, b[n - 1, y + 1, 1]*If[t == 1, z, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]*If[t == -1, z, 1]] + If[y < 1, 0, b[n - 1, y, 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 12}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)
Formula
G.f.: G = G(t,z) satisfies zG^2 - (1-z - t^2*z - 2tz^2+t^2*z^2)G + z^2 = 0.
The g.f. B(t,s,z) of bargraphs, where t(s) marks double rises (falls) and z marks semiperimeter, satisfies zB^2 - (1-(1+ts)z +(ts- t-s)z^2)B + z^2 = 0.
Comments