A276075 a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).
0, 1, 2, 2, 6, 3, 24, 3, 4, 7, 120, 4, 720, 25, 8, 4, 5040, 5, 40320, 8, 26, 121, 362880, 5, 12, 721, 6, 26, 3628800, 9, 39916800, 5, 122, 5041, 30, 6, 479001600, 40321, 722, 9, 6227020800, 27, 87178291200, 122, 10, 362881, 1307674368000, 6, 48, 13, 5042, 722, 20922789888000, 7, 126, 27, 40322, 3628801, 355687428096000, 10, 6402373705728000, 39916801, 28, 6, 726, 123
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3180 (First 120 terms from Antti Karttunen).
Crossrefs
Programs
-
Mathematica
Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
-
Python
from sympy import factorint, factorial as f, primepi def a(n): F=factorint(n) return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F) print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017
Comments